
Lecture 1 Handout
Introduction to Computers and Python

INF 605 - Introduction to Programming - Python

Prof. Rongyu Lin
Quinnipiac University

School of Computing and Engineering

Fall 2025

Learning Objectives

By the end of this lecture, you will be able to:

1. Explain the relationship between hardware, software, and programming

2. Understand why Python is an excellent first programming language

3. Set up and use Python development environments (Google Colab, Jupyter)

4. Write and execute Python programs with proper syntax

5. Create and use variables to store different data types

6. Perform mathematical calculations including order of operations

7. Format output using f-strings and print statements

8. Use basic math library functions

9. Appreciate Python’s role in data science and real-world applications

1 Today’s Learning Journey

This lecture is structured as a three-part journey designed to build your programming foundation
step by step:

Part I: Getting to Know Each Other (15 min)

� Icebreaker activities and programming background survey

� Exploring programming in daily life

� Setting course goals and expectations

Part II: Programming Foundations (15 min)

� Understanding what programming really is

1

� Computer fundamentals: hardware and software

� Evolution of programming languages

Part III: Python Programming (45 min)

� Why Python is perfect for beginners

� Setting up development environments

� Writing first programs with variables and data types

� Preview of Python’s incredible power

Goal: By the end of today, you’ll be confident writing Python programs with variables and
data types!

2 Part I: Getting to Know Each Other

2.1 Programming Background Survey

Let’s start by understanding where everyone is coming from with programming:
Reflection Questions:

� Have you programmed before? What languages have you tried?

� What was your first programming experience like?

� If you’re a complete beginner, don’t worry - you’re in great company!

Fun Fact: Every expert programmer started exactly where you are now! The key is
persistence and practice.

”The best time to plant a tree was 20 years ago. The second best time is now.”

2.2 Programming is Everywhere!

Let’s explore how programming touches every aspect of our daily lives:
Think-Pair-Share Activity: Where do you encounter programming in daily life?
Examples you might not have considered:

� Your smartphone: Every app, every swipe, every notification

� Social media: Algorithms deciding what you see

� Transportation: GPS navigation, ride-sharing apps, traffic lights

� Entertainment: Netflix recommendations, Spotify playlists, video games

� Shopping: E-commerce sites, price comparisons, inventory management

� Education: Learning management systems, online courses, digital textbooks

Python Powers: Instagram, Netflix, Spotify, NASA, Google, and countless financial insti-
tutions!

Programming isn’t just for ”tech people” - it’s a valuable skill for everyone in the modern
world.

2

2.3 Your Programming Goals

Partner Activity: Share with a neighbor what you hope to build or accomplish with pro-
gramming.

Possible goals and what Python can help you achieve:

� Data Analysis: Analyze sports statistics, financial data, research findings

� Web Development: Create websites and web applications

� Automation: Automate repetitive tasks, organize files, send emails

� Games & Apps: Build games, mobile apps, desktop applications

� AI & Machine Learning: Create intelligent systems, chatbots, image recognition

� Career Advancement: Add valuable skills to any field of study

Fun Python Facts:

� Named after ”Monty Python’s Flying Circus” (not the snake!)

� Most popular programming language in the world (2024)

� Used by 8.2 million developers worldwide

2.4 Welcome to INF 605!

Introduction to Programming - Python

� Practical Focus: Real-world applications and projects

� Interactive Learning: Hands-on coding every class session

� Modern Approach: Industry-standard tools and practices

� Data Science Ready: Foundation for analytics and AI careers

� Project-Based: Build portfolio-worthy applications

Course Philosophy: ”Learning programming is like learning to drive - you need practice
behind the wheel!”

Every class: Code → Practice → Build
We emphasize:

� Active Learning: You’ll write and run code in every class session

� Practical Applications: Focus on real-world problems and solutions

� Conceptual Understanding: Learn not just how to code, but why code works

� Modern Tools: Use industry-standard development environments and practices

� Collaborative Learning: Work together to solve problems and learn from each other

3

3 Part II: Programming Foundations

3.1 What is Programming?

3.2 Programming as Problem Solving

Programming is fundamentally about problem solving. When we program, we:

1. Identify a problem that needs to be solved

2. Break it down into smaller, manageable pieces

3. Design an algorithm (step-by-step solution)

4. Implement the algorithm in a programming language

5. Test and refine the solution

3.3 Programming as Communication

Programs are instructions we give to computers, but they’re also communication tools. A
well-written program communicates:

� To the computer: What operations to perform

� To other programmers: How the solution works

� To your future self: Why certain decisions were made

3.4 Real-World Analogy: Cooking Recipe

Programming is like writing a detailed recipe:

� Recipe = Program: Step-by-step instructions

� Ingredients = Data: The information or materials you work with

� Cooking steps = Code: The specific actions to perform

� Final dish = Output: The result of following the instructions

Just as a recipe needs to be precise and complete for anyone to follow it successfully, a
program needs to be clearly written and logically structured.

3.5 Computer Fundamentals: Hardware and Software

3.6 Computer Hardware

Computer hardware consists of the physical components that make up a computer system:
Central Processing Unit (CPU):

� Often called the ”brain” of the computer

� Executes program instructions

� Modern CPUs can perform billions of operations per second

� Examples: Intel Core i7, AMD Ryzen, Apple M1

Memory (RAM - Random Access Memory):

4

� Temporary storage for data and programs currently in use

� Much faster than permanent storage

� Volatile - contents are lost when power is turned off

� Typical capacities: 8GB, 16GB, 32GB or more

Storage Devices:

� Permanent storage for data and programs

� Hard Disk Drives (HDDs): Slower but inexpensive

� Solid State Drives (SSDs): Faster, more reliable, more expensive

� Cloud storage: Remote storage accessible via internet

Input/Output Devices:

� Input: Keyboard, mouse, touchscreen, microphone, camera

� Output: Monitor, speakers, printer

� Network interfaces: Ethernet, Wi-Fi, Bluetooth

3.7 Computer Software

Software consists of the instructions that tell hardware what to do:
System Software:

� Operating Systems: Windows, macOS, Linux, iOS, Android

� Device Drivers: Allow OS to communicate with hardware

� Utilities: System maintenance and management tools

Application Software:

� Productivity: Microsoft Office, Google Workspace

� Web Browsers: Chrome, Firefox, Safari, Edge

� Media: Photoshop, VLC, Spotify

� Games: Everything from simple mobile games to complex AAA titles

Programming Software:

� Text Editors: VS Code, Sublime Text, Vim

� IDEs: PyCharm, Visual Studio, Xcode

� Compilers and Interpreters: Python interpreter, Java compiler

3.8 The Hardware-Software Relationship

The relationship between hardware and software is symbiotic:

� Hardware provides the platform for software to run

� Software gives hardware its functionality

� Neither is useful without the other

� Performance depends on both hardware capabilities and software efficiency

5

3.9 Understanding Data: The Data Hierarchy (Background Information)

Understanding how computers organize and store information is crucial for programmers. Data
is organized in a hierarchy from the smallest unit (bits) to complex structures (databases).

3.10 Bits and Bytes

Bits (Binary Digits):

� The smallest unit of data in computing

� Can hold only one of two values: 0 or 1

� Everything in a computer is ultimately represented in binary

� Example: The letter ’A’ is represented as 01000001

Bytes:

� A group of 8 bits

� Can represent 256 different values (28)

� Standard unit for measuring storage and memory

� One byte typically stores one character

3.11 Characters and Strings

Characters:

� Individual letters, numbers, symbols

� Encoded using standards like ASCII or Unicode

� ASCII: 128 characters (English letters, numbers, basic symbols)

� Unicode: Millions of characters (supports all languages, emojis)

Strings:

� Sequences of characters

� Can represent words, sentences, or any text

� Example: ”Hello, World!” is a string of 13 characters

3.12 Fields and Records

Fields:

� Individual data items about an entity

� Examples: first name, last name, age, email

� Have specific data types (text, number, date, etc.)

Records:

� Collections of related fields

� Represent information about a single entity

� Example: One student’s complete information (name, ID, GPA, major)

6

3.13 Files and Databases

Files:

� Collections of related records

� Examples: student roster, employee database, customer list

� Can be stored in various formats (CSV, JSON, XML)

Databases:

� Collections of related files

� Include relationships between different types of data

� Examples: University system (students, courses, grades, faculty)

� Use database management systems (MySQL, PostgreSQL, MongoDB)

3.14 Programming Language Evolution

3.15 Machine Language (First Generation)

Machine language is the lowest level of programming language:

� Instructions written in binary (0s and 1s)

� Directly executed by the CPU

� Extremely difficult for humans to read and write

� Different for each type of processor

� Very fast execution, no translation needed

Example of machine language:

1 10110000 01100001 # Load value 97 into register

2 10110011 01100010 # Load value 98 into register

3 00000001 11000011 # Add the values

3.16 Assembly Language (Second Generation)

Assembly language uses symbolic representations:

� Uses mnemonics (memory aids) instead of binary

� One-to-one correspondence with machine language

� Still processor-specific

� Requires an assembler to convert to machine language

� More readable than machine language, but still complex

Example of assembly language:

1 MOV AX , 97 ; Load 97 into register AX

2 MOV BX , 98 ; Load 98 into register BX

3 ADD AX , BX ; Add BX to AX

7

3.17 High-Level Languages (Third Generation)

High-level languages are closer to human language:

� Use English-like syntax and mathematical notation

� Portable across different computer systems

� Require compilation or interpretation

� Much easier to learn and use

� Examples: Python, Java, C++, JavaScript

Example in Python:

1 result = 97 + 98

2 print(f"The result is: {result}")

3.18 Very High-Level Languages (Fourth Generation)

These languages are even more abstracted:

� Focus on what to do rather than how to do it

� Often domain-specific

� Examples: SQL (database queries), MATLAB (mathematical computing)

� Very productive for specific types of problems

Example in SQL:

1 SELECT name , age FROM students WHERE gpa > 3.5;

4 Part III: Python Programming

4.1 Why Python? The Perfect Learning Language

4.2 Python’s History and Philosophy

Python was created by Guido van Rossum in 1991 with the goal of creating a programming
language that was:

� Easy to read and write

� Powerful enough for serious applications

� Fun to use (named after Monty Python’s Flying Circus)

The Zen of Python includes principles like:

� ”Beautiful is better than ugly”

� ”Explicit is better than implicit”

� ”Simple is better than complex”

� ”Readability counts”

8

4.3 Python’s Advantages for Beginners

Readable Syntax:

� Uses indentation to define code blocks (no curly braces)

� Keywords are English words (if, else, for, while)

� Minimal punctuation compared to other languages

4.4 Python Indentation: The Foundation of Python Syntax

CRITICAL CONCEPT: Python uses indentation (spaces or tabs) to define code structure,
unlike most programming languages that use curly braces {} or keywords like begin/end.

Why Indentation Matters:

� Enforces readable code: Python forces you to write visually organized code

� Prevents errors: Proper indentation reduces logic mistakes

� Universal standard: All Python programmers follow the same visual structure

� Natural grouping: Related code lines are visually grouped together

The Golden Rules of Python Indentation:

1. Consistent Indentation: Use the same amount of spaces/tabs throughout your program

2. Standard Practice: Use 4 spaces per indentation level (recommended by Python)

3. No Mixing: Never mix spaces and tabs in the same file

4. Visual Structure: Indented code belongs to the line above it

5. After Colons: Any line ending with : requires indentation on the next line

Indentation in Action:

1 # Example with proper indentation

2 age = 20

3 if age >= 18:

4 print("You are an adult!") # 4 spaces indentation

5 print("You can vote!") # 4 spaces indentation

6 print("You have responsibilities!") # 4 spaces indentation

7 print("This line always runs") # No indentation

8

9 # Multiple indentation levels (nested structure)

10 temperature = 85

11 if temperature > 70:

12 print("It’s warm outside!") # 1st level: 4 spaces

13 if temperature > 80:

14 print("Actually , it’s hot!") # 2nd level: 8 spaces

15 print("Stay hydrated!") # 2nd level: 8 spaces

16 print("Great day for outdoor activities!") # Back to 1st level: 4

spaces

Common Beginner Mistakes:

� Missing indentation: Forgetting to indent after :

� Inconsistent spacing: Mixing 2 spaces and 4 spaces

9

� Mixing tabs and spaces: Using both in the same file

� Wrong indentation level: Not matching the expected structure

Error Examples (Do NOT do this):

1 # ERROR: Missing indentation after colon

2 if age >= 18:

3 print("This will cause IndentationError!")

4

5 # ERROR: Inconsistent indentation

6 if age >= 18:

7 print("Four spaces") # 4 spaces (correct)

8 print("Two spaces") # 2 spaces (inconsistent !)

Key Takeaway: Indentation in Python isn’t just style—it’s syntax! Master this concept
and you’ll avoid 90% of beginner Python errors. We’ll practice this extensively in Lecture 2
with conditional statements.

Interactive Nature:

� Can run code immediately without compilation

� Interactive shell for experimentation

� Immediate feedback helps learning

Extensive Library Support:

� ”Batteries included” standard library

� Huge ecosystem of third-party libraries

� Package manager (pip) makes installation easy

Versatility:

� Web development (Django, Flask)

� Data science and machine learning (pandas, scikit-learn)

� Desktop applications (tkinter, PyQt)

� System administration and automation

� Scientific computing (NumPy, SciPy)

4.5 Python vs Other First Languages

Aspect Python Java C++

Hello World print("Hello") 5+ lines with
classes

Complex syntax

Memory Management Automatic Automatic with
GC

Manual

Learning Curve Gentle Moderate Steep

Industry Use Very High Very High High

Beginner Friendly Excellent Good Poor

10

4.6 Python’s Popularity and Industry Adoption

According to various programming language indices:

� PYPL Index: Python is #1 globally

� Stack Overflow Survey: Among top 3 most popular languages

� GitHub: One of the most used languages

� Job Market: High demand for Python developers

Companies Using Python:

� Google: YouTube, Search, Gmail backend

� Netflix: Recommendation algorithms, content delivery

� Instagram: Web backend serving billions of users

� Spotify: Music recommendation and data analysis

� NASA: Mission planning and data analysis

� Financial Firms: Trading algorithms, risk analysis

4.7 Preview: The Power of Python Libraries

Before we dive into basic programming, let’s get excited about where this journey will take us!
Libraries give Python superpowers by providing pre-written code for complex tasks.

What are Libraries? Libraries are collections of pre-written code that provide specific
functionality:

� Reusable code: Solve common problems without starting from scratch

� Tested and optimized: Created and maintained by experts

� Time-saving: Focus on your unique problem, not basic functionality

� Community-driven: Thousands of contributors worldwide

Math Library Preview:

1 import math

2 radius = 7.5

3 area = math.pi * radius ** 2

4 print(f"Circle area: {area :.2f}")

5 print(f"Square root of 16: {math.sqrt (16)}")

6 print(f"Sin of 90 degrees: {math.sin(math.pi/2)}")

Don’t worry about understanding this code yet - we’ll build up to it step by step!

5 The Complete Power of Libraries

5.1 What are Libraries?

Libraries are collections of pre-written code that provide specific functionality:

� Reusable code: Solve common problems without starting from scratch

� Tested and optimized: Created and maintained by experts

� Time-saving: Focus on your unique problem, not basic functionality

� Standardized: Common interfaces and conventions

11

5.2 Python Standard Library

Python comes with a comprehensive standard library ”batteries included”:
Common Standard Library Modules:

� math: Mathematical functions (sin, cos, sqrt, pi)

� random: Generate random numbers and make random choices

� datetime: Work with dates and times

� os: Interact with the operating system

� json: Work with JSON data format

� urllib: Download data from web URLs

� re: Regular expressions for text pattern matching

Example using the math library:

1 import math

2

3 # Calculate the area of a circle

4 radius = 5

5 area = math.pi * radius ** 2

6 print(f"Area of circle with radius {radius }: {area :.2f}")

7

8 # Use trigonometric functions

9 angle = math.pi / 4 # 45 degrees in radians

10 print(f"sin (45$^{\ circ}$) = {math.sin(angle):.3f}")

11 print(f"cos (45$^{\ circ}$) = {math.cos(angle):.3f}")

12

13 # Other useful math functions

14 print(f"Square root of 16: {math.sqrt (16)}")

15 print(f"2 to the power of 8: {math.pow(2, 8)}")

5.3 Third-Party Libraries

Beyond the standard library, Python has a vast ecosystem of third-party libraries:
Data Science Libraries:

� NumPy: Numerical computing with arrays

� pandas: Data manipulation and analysis

� matplotlib: Creating plots and visualizations

� seaborn: Statistical data visualization

� scikit-learn: Machine learning algorithms

Web Development:

� requests: HTTP library for API calls

� Flask: Lightweight web framework

� Django: Full-featured web framework

12

� FastAPI: Modern API framework

Automation and Scraping:

� selenium: Web browser automation

� beautifulsoup4: HTML/XML parsing

� pillow: Image processing

5.4 Installing and Using Libraries

Python’s package manager pip makes library installation easy:

1 # Install a single library

2 pip install pandas

3

4 # Install multiple libraries

5 pip install numpy matplotlib seaborn

6

7 # Install from requirements file

8 pip install -r requirements.txt

9

10 # Upgrade a library

11 pip install --upgrade pandas

Using libraries in your code:

1 # Import entire library

2 import pandas

3

4 # Import with alias

5 import pandas as pd

6

7 # Import specific functions

8 from math import sqrt , pi

9

10 # Import all functions (generally not recommended)

11 from math import *

5.5 Preview: Object-Oriented Programming

Object-Oriented Programming (OOP) is an advanced concept we’ll explore later in the course.
For now, just know that Python makes it easy to organize code around real-world concepts.

Quick Preview - Don’t worry about understanding this yet!

1 class Student:

2 def __init__(self , name , gpa):

3 self.name = name

4 self.gpa = gpa

5

6 def is_honor_student(self):

7 return self.gpa >= 3.5

8

9 # Create a student object

10 alice = Student("Alice Johnson", 3.75)

11 print(f"{alice.name} honor student: {alice.is_honor_student ()}")

This advanced topic will make sense after we master the fundamentals!

13

6 Introduction to Object-Oriented Programming (Advanced Pre-
view)

6.1 What is Object-Oriented Programming?

Object-Oriented Programming (OOP) is a programming paradigm that organizes code around
objects rather than functions and logic.

Key Principles:

� Encapsulation: Bundle data and methods that work on that data

� Inheritance: Create new classes based on existing classes

� Polymorphism: Use the same interface for different types

� Abstraction: Hide complex implementation details

6.2 OOP Concepts with Real-World Analogies

Classes and Objects:

� Class: A blueprint or template (like a house blueprint)

� Object: An instance created from a class (actual house built from blueprint)

� Multiple objects: Many instances can be created from one class

Example: Car Class

1 class Car:

2 def __init__(self , make , model , year , color):

3 # Attributes (properties)

4 self.make = make

5 self.model = model

6 self.year = year

7 self.color = color

8 self.speed = 0

9 self.is_running = False

10

11 # Methods (actions the car can perform)

12 def start(self):

13 self.is_running = True

14 return f"The {self.color} {self.make} {self.model} is now

running"

15

16 def accelerate(self , amount):

17 if self.is_running:

18 self.speed += amount

19 return f"Speed increased to {self.speed} mph"

20 else:

21 return "Please start the car first"

22

23 def brake(self , amount):

24 self.speed = max(0, self.speed - amount)

25 return f"Speed decreased to {self.speed} mph"

26

27 def stop(self):

28 self.speed = 0

29 self.is_running = False

14

30 return "Car stopped"

31

32 # Creating objects (instances) from the Car class

33 my_car = Car("Toyota", "Camry", 2022, "blue")

34 friend_car = Car("Honda", "Civic", 2021, "red")

35

36 # Using the objects

37 print(my_car.start ()) # "The blue Toyota Camry is now running

"

38 print(my_car.accelerate (30)) # "Speed increased to 30 mph"

39 print(my_car.brake (10)) # "Speed decreased to 20 mph"

40

41 print(friend_car.start ()) # "The red Honda Civic is now running"

42 print(friend_car.accelerate (45)) # "Speed increased to 45 mph"

6.3 Benefits of Object-Oriented Programming

� Modularity: Code is organized into logical units

� Reusability: Classes can be reused in different programs

� Maintainability: Easier to modify and extend code

� Real-world modeling: Natural way to represent real-world entities

� Collaboration: Teams can work on different classes independently

6.4 Python Development Environments

6.5 Text Editors and IDEs

Simple Text Editors:

� Advantages: Lightweight, fast, available everywhere

� Examples: Notepad++, Sublime Text, Atom

� Best for: Quick scripts, simple programs

Integrated Development Environments (IDEs):

� Features: Code completion, debugging, project management

� Popular Python IDEs:

– PyCharm: Full-featured, great for large projects

– VS Code: Lightweight, extensible, very popular

– Spyder: Scientific computing focus

– IDLE: Comes with Python, good for beginners

6.6 Interactive Python Environments

Python Interactive Shell:

� Basic interactive mode

� Start by typing python in terminal

15

� Limited features, basic functionality

IPython (Interactive Python):

� Enhanced interactive shell

� Features: Syntax highlighting, tab completion, command history

� Magic commands for special operations

� Better error messages and debugging

Jupyter Notebooks:

� Web-based interactive environment

� Mix code, text, equations, and visualizations

� Excellent for learning, data analysis, and sharing

� Used extensively in data science and research

6.7 Setting Up Your Development Environment

Installing Python:

1. Visit https://python.org

2. Download Python 3.x (latest version)

3. Run installer, make sure to check ”Add to PATH”

4. Verify installation: python --version

Installing IPython:

1 pip install ipython

Installing Jupyter:

1 pip install jupyter

2 # or install JupyterLab (newer interface)

3 pip install jupyterlab

Starting Different Environments:

1 # Start basic Python shell

2 python

3

4 # Start IPython

5 ipython

6

7 # Start Jupyter Notebook

8 jupyter notebook

9

10 # Start JupyterLab

11 jupyter lab

16

https://python.org

6.8 Your First Python Programs

6.9 The Traditional ”Hello, World!” Program

Every programmer’s journey begins with ”Hello, World!” - a simple program that displays text:

1 print("Hello , World!")

This simple line demonstrates several important concepts:

� print(): A built-in function that displays output

� Strings: Text enclosed in quotes

� Function calls: Using parentheses to execute a function

Variations to try:

1 print("Hello , Quinnipiac University!")

2 print("Welcome to INF 605!")

3 print("My name is", "Alice") # Multiple arguments

4 print("Python", "is", "awesome", sep=" - ") # Custom separator

6.10 Python as a Powerful Calculator

Python excels as an interactive calculator and can handle all kinds of mathematical operations.
Let’s explore step by step:

Basic Arithmetic Operations:

1 # Addition and subtraction

2 print (15 + 25) # 40

3 print (50 - 18) # 32

4

5 # Multiplication and division

6 print(6 * 7) # 42

7 print (84 / 4) # 21.0 (regular division always returns float)

8 print(2 ** 10) # 1024 (exponentiation: 2 to the power of 10)

More Advanced Operations:

1 # Floor division and modulus

2 print (17 // 4) # 4 (floor division returns integer part)

3 print (17 % 4) # 1 (modulus returns remainder)

4 print (15 // 3) # 5 (no remainder , clean division)

5 print (20 % 4) # 0 (no remainder)

Order of Operations (PEMDAS): Python follows standard mathematical order of op-
erations:

1 print(2 + 3 * 4) # 14 (multiplication before addition)

2 print ((2 + 3) * 4) # 20 (parentheses first)

3 print(2 ** 3 * 4) # 32 (exponentiation before multiplication)

4 print(2 ** (3 * 4)) # 4096 (parentheses change everything !)

5 print (10 - 3 * 2) # 4 (multiplication before subtraction)

6 print ((10 - 3) * 2) # 14 (parentheses change the result)

Working with Variables for Practical Calculations: Variables make calculations more
organized and reusable:

17

1 # Shopping calculation example

2 price = 29.99

3 quantity = 3

4 tax_rate = 0.08

5

6 # Step -by -step calculation

7 subtotal = price * quantity

8 tax_amount = subtotal * tax_rate

9 total_cost = subtotal + tax_amount

10

11 # Professional output formatting (we’ll learn f-strings next!)

12 print(f"Item price: ${price :.2f}")

13 print(f"Quantity: {quantity}")

14 print(f"Subtotal: ${subtotal :.2f}")

15 print(f"Tax ({ tax_rate *100}%): ${tax_amount :.2f}")

16 print(f"Total cost: ${total_cost :.2f}")

Advanced Math with Libraries:

1 import math

2

3 # Mathematical functions

4 print(f"Square root of 16: {math.sqrt (16)}") # 4.0

5 print(f"Value of pi: {math.pi}") # 3.14159...

6

7 # Calculate circle area

8 radius = 7.5

9 area = math.pi * radius ** 2

10 print(f"Circle area: {area :.2f}")

6.11 Understanding Python Data Types

Python automatically recognizes different types of data, which makes programming much easier
for beginners!

Numbers:

� Integers (whole numbers): age = 20, year = 2025

� Floats (decimal numbers): gpa = 3.75, price = 29.99

Text (Strings):

� name = "Alice Johnson"

� university = "Quinnipiac University"

� Must be enclosed in quotes (single or double)!

True/False (Booleans):

� is enrolled = True

� has scholarship = False

� Note: True and False are capitalized in Python

Key Point: Python is smart - you don’t need to declare types like in other languages!
Examples with Different Data Types:

18

1 # Different types of variables

2 student_name = "Alice Johnson" # String

3 student_age = 20 # Integer

4 student_gpa = 3.75 # Float

5 is_enrolled = True # Boolean

6

7 # Python automatically knows the types!

8 print(f"Name: {student_name}")

9 print(f"Age: {student_age}")

10 print(f"GPA: {student_gpa}")

11 print(f"Enrolled: {is_enrolled}")

6.12 Creating and Using Variables

Variables are like labeled boxes that store values
Think of variables as containers with labels. You can put different types of data in them

and use them in calculations.
Creating Variables:

1 # Simple variable assignment

2 student_name = "Alice Johnson"

3 student_age = 20

4 student_gpa = 3.75

Variable Naming Rules:

� Use descriptive names: price, not p

� Use underscores for multiple words: first name, not firstName

� Start with letter or underscore, not numbers

� No spaces or special characters (@, #, !, etc.)

� Case-sensitive: name and Name are different

� Cannot use Python keywords (if, for, while, etc.)

Good Variable Naming Examples:

1 # Good variable names (descriptive and clear)

2 first_name = "John"

3 student_count = 25

4 MAX_ATTEMPTS = 3 # Constants in ALL_CAPS

5 is_valid = True

6 total_price = 99.99

7

8 # Avoid these (not descriptive or confusing)

9 a = "John" # Too short , not descriptive

10 studentcount = 25 # Hard to read without underscores

11 max = 3 # Could conflict with built -in function

12 flag = True # What does this flag represent?

Using Variables in Calculations:

1 # Real -world example: calculating course grade

2 quiz_grade = 85

3 exam_grade = 92

4 homework_grade = 88

19

5

6 # Calculate weighted average

7 final_grade = (quiz_grade * 0.3) + (exam_grade * 0.5) + (homework_grade

* 0.2)

8 print(f"Your final grade is: {final_grade :.1f}")

Checking Variable Types (Advanced): If you’re curious about what type Python thinks
your variable is:

1 name = "Alice"

2 age = 25

3 height = 5.6

4 is_student = True

5

6 print(f"name is of type: {type(name)}") # <class ’str ’>

7 print(f"age is of type: {type(age)}") # <class ’int ’>

8 print(f"height is of type: {type(height)}") # <class ’float ’>

9 print(f"is_student is of type: {type(is_student)}")# <class ’bool ’>

6.13 Formatting Output with F-Strings

F-strings are Python’s modern way to include variables in text output. They make your pro-
grams look professional!

Basic F-String Syntax:

� Put f before the opening quote

� Put variables inside curly braces {}

� print(f"Hello, {name}!")

Practical Examples:

1 name = "Alice"

2 age = 20

3 university = "Quinnipiac"

4

5 # Simple f-string usage

6 print(f"My name is {name} and I am {age} years old.")

7 print(f"I attend {university} University.")

8

9 # Output:

10 # My name is Alice and I am 20 years old.

11 # I attend Quinnipiac University.

Formatting Numbers with F-Strings:

1 price = 29.99567

2 quantity = 3

3 total = price * quantity

4

5 # Format to 2 decimal places

6 print(f"Price per item: ${price :.2f}")

7 print(f"Quantity: {quantity}")

8 print(f"Total cost: ${total :.2f}")

9

10 # Output:

11 # Price per item: $29 .99

12 # Quantity: 3

13 # Total cost: $89 .99

20

Advanced F-String Formatting:

1 # Percentage formatting

2 gpa = 3.75

3 percentage = gpa / 4.0 * 100

4 print(f"GPA: {gpa :.2f} ({ percentage :.1f}%)")

5

6 # Mathematical expressions inside f-strings

7 radius = 5

8 print(f"Area of circle with radius {radius }: {3.14159 * radius **2:.2f}"

)

Pro Tip: F-strings make your output look professional and are much easier to read than
older string formatting methods!

7 Working with IPython

7.1 Starting IPython

IPython provides an enhanced interactive Python experience:

1 # Start IPython from terminal

2 ipython

3

4 # You should see something like:

5 Python 3.9.7 (default , Sep 16 2021, 16:59:28)

6 Type ’copyright ’, ’credits ’ or ’license ’ for more information

7 IPython 7.29.0 -- An enhanced Interactive Python. Type ’?’ for help.

8

9 In [1]:

7.2 IPython Features

Enhanced Input/Output:

1 In [1]: 2 + 2

2 Out [1]: 4

3

4 In [2]: "Hello" + " " + "World"

5 Out [2]: ’Hello World’

6

7 In [3]: print("This is a print statement")

8 This is a print statement

9

10 In [4]: # Notice no Out [4] for print statements

Tab Completion: Type the beginning of a variable name, function name, or method and
press Tab:

1 In [5]: import math

2 In [6]: math.sq <TAB > # Will complete to math.sqrt

3 In [7]: math.sqrt (16)

4 Out [7]: 4.0

Getting Help:

1 In [8]: len? # Get help about the len function

2 In [9]: math.sqrt? # Get help about sqrt function

3 In [10]: ?print # Another way to get help

21

Magic Commands: IPython provides special ”magic” commands starting with %:

1 In [11]: %pwd # Show current working directory

2 In [12]: %ls # List files in current directory

3 In [13]: %time 2**100 # Time how long a command takes to run

4 In [14]: %history # Show command history

5 In [15]: %reset # Clear all variables

Command History:

� Use Up/Down arrow keys to navigate through previous commands

� Ctrl+R: Search through command history

� %history: Display all previous commands

7.3 Practical IPython Session

Let’s work through a practical example using IPython:

1 In [1]: # Let’s calculate the compound interest

2 In [2]: principal = 1000 # Initial amount

3 In [3]: rate = 0.05 # 5% annual interest rate

4 In [4]: years = 10 # Investment period

5

6 In [5]: # Calculate compound interest

7 In [6]: amount = principal * (1 + rate) ** years

8 In [7]: interest_earned = amount - principal

9

10 In [8]: print(f"Initial investment: ${principal :.2f}")

11 Initial investment: $1000 .00

12

13 In [9]: print(f"After {years} years at {rate *100}% annual rate:")

14 After 10 years at 5.0% annual rate:

15

16 In [10]: print(f"Final amount: ${amount :.2f}")

17 Final amount: $1628 .89

18

19 In [11]: print(f"Interest earned: ${interest_earned :.2f}")

20 Interest earned: $628 .89

21

22 In [12]: # Let’s see what happens with different rates

23 In [13]: for r in [0.03, 0.05, 0.07]:

24 ...: final = principal * (1 + r) ** years

25 ...: print(f"Rate: {r*100}% -> Final amount: ${final :.2f}")

26 ...:

27 Rate: 3.0% -> Final amount: $1343 .92

28 Rate: 5.0% -> Final amount: $1628 .89

29 Rate: 7.0% -> Final amount: $1967 .15

8 Google Colab: Your Python Playground

8.1 What is Google Colab?

Google Colaboratory (Colab) is a free, cloud-based Jupyter notebook environment that runs
entirely in your web browser. It’s perfect for learning Python because:

Key Benefits:

22

� No Installation Required: Everything runs in the cloud

� Free Access: No cost to use, just need a Google account

� Pre-installed Libraries: NumPy, Pandas, Matplotlib already available

� Powerful Hardware: Free access to GPU and TPU resources

� Easy Sharing: Share notebooks like Google Docs

� Persistent Storage: Save to Google Drive automatically

8.2 Getting Started with Google Colab

Step 1: Access Colab

1. Open your web browser

2. Go to colab.research.google.com

3. Sign in with your Google account

4. Click ”New Notebook” to start coding

Step 2: Understanding the Interface

� Code Cells: Write and execute Python code

� Text Cells: Add explanations using Markdown

� Menu Bar: File operations, runtime controls

� Toolbar: Quick access to common functions

8.3 Why We Use Colab in This Course

Educational Advantages:

� Consistency: Everyone has the same environment

� Accessibility: Works on any device with a browser

� Immediate Feedback: Run code instantly and see results

� Rich Output: Display graphs, images, and formatted text

� Collaboration: Easy to share assignments and get help

Professional Relevance:

� Used by Google, Netflix, and other tech companies

� Standard tool for data science and machine learning

� Skills transfer directly to industry work

� Part of the modern Python development ecosystem

23

8.4 Colab vs Traditional Programming

Aspect Traditional IDE Google Colab

Setup Install Python, IDE, libraries Just open a web browser

Hardware Limited by your computer Access to powerful cloud
GPUs

Sharing Email files, complex setup Share link, instant access

Documentation Separate files Integrated text and code

Learning Curve Steep Gentle

8.5 Your First Colab Experience

Let’s create your first Google Colab notebook:
Exercise: Hello Colab

1. Visit colab.research.google.com

2. Click ”New Notebook”

3. In the first cell, type: print("Hello, Python!")

4. Press Shift+Enter to run the cell

5. Add a text cell by clicking ”+ Text”

6. Write: ”This is my first Python program”

7. Save your notebook (File � Save)

Congratulations! You’ve just created your first Python program in the cloud!

9 Introduction to Jupyter Notebooks

9.1 What are Jupyter Notebooks?

Jupyter Notebooks are web-based interactive computing environments that allow you to:

� Combine code, text, equations, and visualizations in one document

� Execute code in individual cells

� Document your thought process alongside your code

� Share your work with others easily

� Create tutorials, reports, and presentations

9.2 Starting Jupyter

1 # Start Jupyter Notebook

2 jupyter notebook

3

4 # Or start JupyterLab (newer interface)

5 jupyter lab

This will:

1. Start the Jupyter server

2. Open your web browser automatically

3. Display the Jupyter file browser

24

9.3 Jupyter Cell Types

Code Cells:

� Contain Python code

� Execute when you press Shift+Enter

� Show output below the cell

� Variables persist between cells

Markdown Cells:

� Contain formatted text, equations, images

� Use Markdown syntax

� Great for explanations, notes, and documentation

� Render when you press Shift+Enter

Example Markdown:

1 # This is a heading

2 ## This is a subheading

3

4 This is **bold** text and this is *italic* text.

5

6 Here ’s a bulleted list:

7 - Item 1

8 - Item 2

9 - Item 3

10

11 Here ’s a mathematical equation: $E = mc^2$

12

13 Here ’s some code: ‘print(" Hello World")‘

9.4 Jupyter Keyboard Shortcuts

� Shift+Enter: Run cell and move to next

� Ctrl+Enter: Run cell but stay in current cell

� A: Insert cell above (in command mode)

� B: Insert cell below (in command mode)

� D, D: Delete cell (press D twice)

� M: Change cell to Markdown

� Y: Change cell to Code

� Esc: Enter command mode

� Enter: Enter edit mode

25

10 Programming in the Modern World

10.1 The Internet and Programming

Modern programming is inherently connected to the internet and networked systems:
APIs (Application Programming Interfaces):

� Allow programs to communicate with web services

� Access data from Twitter, weather services, stock markets

� Examples: REST APIs, GraphQL APIs

Cloud Computing:

� Run programs on remote servers

� Scale applications automatically

� Examples: AWS, Google Cloud, Microsoft Azure

Web Applications:

� Programs that run in web browsers

� Accessible from anywhere with internet connection

� Examples: Gmail, Facebook, online banking

10.2 Big Data and Programming

The scale of data in modern applications is unprecedented:
Data Scale Examples:

� Google: Processes 20+ petabytes of data per day

� Facebook: Stores 300+ petabytes of user data

� YouTube: 500+ hours of video uploaded every minute

� Twitter: 500+ million tweets sent daily

Big Data Characteristics (The 5 V’s):

� Volume: Massive amounts of data

� Velocity: Data generated rapidly

� Variety: Different types and formats

� Veracity: Data quality and accuracy

� Value: Extracting meaningful insights

Python’s Role in Big Data:

� Data Collection: Web scraping, API access

� Data Processing: pandas, NumPy for manipulation

� Data Analysis: Statistical analysis, pattern recognition

� Visualization: matplotlib, plotly for charts and graphs

� Machine Learning: scikit-learn, TensorFlow for AI

26

11 Looking Ahead: Course Structure

11.1 Weekly Structure

Monday Sessions:

� Introduction to new concepts

� Theoretical foundations

� Demonstration of key ideas

� Interactive discussions

Wednesday Sessions:

� Hands-on programming practice

� Working through examples together

� Individual and group coding exercises

� Assignment help and Q&A

11.2 Topics We’ll Cover

Weeks 1-4: Python Fundamentals

� Variables, data types, and operations

� Control structures (if statements, loops)

� Functions and scope

� Error handling

Weeks 5-8: Data Structures

� Lists, tuples, and dictionaries

� Sets and advanced data structures

� File input/output

� String processing

Weeks 9-12: Advanced Topics

� Object-oriented programming

� Modules and packages

� NumPy for numerical computing

� pandas for data analysis

Weeks 13-16: Applied Programming

� Data visualization with matplotlib

� Web APIs and data collection

� Final project development

� Professional programming practices

27

11.3 Assignment Structure

Assignment 1: Python Fundamentals

� Variables and basic operations

� Control flow and functions

� Problem-solving with Python

Assignment 2: Data Structures & File Processing

� Lists, dictionaries, and tuples

� File reading and writing

� Data processing and analysis

Assignment 3: NumPy & pandas Analysis

� Numerical computing with NumPy

� Data manipulation with pandas

� Statistical analysis

Assignment 4: Data Visualization Project

� Creating charts and graphs

� Interactive visualizations

� Presenting data insights

Final Project (Weeks 14-16): Complete Data Analysis Portfolio

� Choose your own dataset and research question

� Complete analysis workflow

� Professional presentation

� Portfolio-worthy deliverable

12 Hands-On Exercises

These exercises will help you practice everything we covered in today’s three-part journey!

12.1 Exercise 1: Your Programming Goals Reflection

Before diving into code, let’s connect with your motivation:
Write a brief reflection (in a Jupyter Markdown cell):

� What programming applications excite you most?

� How do you encounter programming in your daily life?

� What would you like to build by the end of this course?

28

12.2 Exercise 2: Basic Calculator Operations

Practice Python as a powerful calculator with these operations:

1 # Basic arithmetic (from slides)

2 print("Addition:", 15 + 25) # 40

3 print("Subtraction:", 50 - 18) # 32

4 print("Multiplication:", 6 * 7) # 42

5 print("Division:", 84 / 4) # 21.0

6 print("Exponentiation:", 2 ** 10) # 1024

7

8 # Advanced operations

9 print("Floor Division:", 17 // 4) # 4 (integer result)

10 print("Modulus (remainder):", 17 % 4) # 1

11 print("Order of operations:", 2 + 3 * 4) # 14 (not 20!)

12 print("With parentheses:", (2 + 3) * 4) # 20

13

14 # Complex calculations

15 print("Complex calculation:", (5 + 3) * 2 ** 3 - 10)

16 print("Average of 85, 90, 78:", (85 + 90 + 78) / 3)

12.3 Exercise 3: Working with Variables and Data Types

Practice the key concepts from today’s slides:

1 # Data Types Practice (from slides examples)

2 # Numbers

3 student_age = 20 # Integer

4 student_gpa = 3.75 # Float

5 year = 2025 # Integer

6 price = 29.99 # Float

7

8 # Text (Strings)

9 student_name = "Alice Johnson" # String

10 university = "Quinnipiac University" # String

11

12 # True/False (Booleans)

13 is_enrolled = True # Boolean

14 has_scholarship = False # Boolean

15

16 # Display all variables with their types

17 print(f"Name: {student_name} (type: {type(student_name)})")

18 print(f"Age: {student_age} (type: {type(student_age)})")

19 print(f"GPA: {student_gpa} (type: {type(student_gpa)})")

20 print(f"Enrolled: {is_enrolled} (type: {type(is_enrolled)})")

12.4 Exercise 4: F-String Formatting Practice

Master the professional output formatting from the slides:

1 # Shopping calculation example (from slides)

2 price = 29.99

3 quantity = 3

4 tax_rate = 0.08

5

6 # Calculate totals

7 subtotal = price * quantity

8 tax_amount = subtotal * tax_rate

29

9 total = subtotal + tax_amount

10

11 # Professional output with f-strings

12 print(f"Item price: ${price :.2f}")

13 print(f"Quantity: {quantity}")

14 print(f"Subtotal: ${subtotal :.2f}")

15 print(f"Tax ({ tax_rate *100}%): ${tax_amount :.2f}")

16 print(f"Total cost: ${total :.2f}")

17

18 # Personal information example

19 name = "Your Name Here"

20 age = 20

21 gpa = 3.75

22

23 print(f"My name is {name} and I am {age} years old.")

24 print(f"My current GPA is {gpa :.2f}")

25 print(f"GPA percentage: {(gpa /4.0) *100:.1f}%")

12.5 Exercise 5: Using the Math Library

Explore Python’s mathematical superpowers (from slides preview):

1 import math

2

3 # Basic math library functions (from slides)

4 print(f"Square root of 16: {math.sqrt (16)}") # 4.0

5 print(f"Value of pi: {math.pi}") # 3.14159...

6 print(f"Sine of 90 degrees: {math.sin(math.pi/2) :.3f}") # 1.0

7

8 # Circle calculations (from slides example)

9 radius = 7.5

10 area = math.pi * radius ** 2

11 print(f"Circle area with radius {radius }: {area :.2f}")

12

13 # Additional mathematical functions

14 print(f"\nAdditional Math Functions:")

15 print(f"Square root of 64: {math.sqrt (64)}")

16 print(f"2 to the power of 10: {math.pow(2, 10)}")

17 print(f"Natural log of e: {math.log(math.e):.3f}")

18

19 # Trigonometry example

20 angle_degrees = 30

21 angle_radians = math.radians(angle_degrees)

22 print(f"\nTrigonometry for {angle_degrees} degrees:")

23 print(f" sin({ angle_degrees} degrees) = {math.sin(angle_radians):.3f}"

)

24 print(f" cos({ angle_degrees} degrees) = {math.cos(angle_radians):.3f}"

)

12.6 Exercise 6: Create Your First Google Colab Notebook

Put it all together in a professional notebook using Google Colab (as emphasized in slides):

1. Visit colab.research.google.com and sign in

2. Create a new notebook and rename it to ”Lecture1 YourName”

30

3. Add a Markdown cell with:

� Course title: INF 605 - Introduction to Programming - Python

� Lecture 1: Introduction to Computers and Python

� Your name and date

� Your programming goals from Exercise 1

4. Add code cells for Exercises 2-5 above

5. Add Markdown cells explaining what each code section does

6. Practice the three-part structure from today:

� Part I: Your programming goals

� Part II: Basic calculations and operations

� Part III: Variables, data types, and f-strings

7. Save your notebook - this is the beginning of your Python portfolio!

Pro Tip: This Google Colab notebook demonstrates the power of cloud-based learning -
you’re documenting your journey while you code, accessible from anywhere!

13 Key Takeaways and Summary

What We Covered Today - Our Three-Part Journey:
Part I: Getting to Know Each Other

� ✓ Shared programming backgrounds and goals

� ✓ Explored programming in daily life

� ✓ Connected with course objectives and philosophy

� ✓ Learned fun Python facts and discovered its widespread use

Part II: Programming Foundations

� ✓ Understood programming as problem-solving and communication

� ✓ Learned computer fundamentals: hardware and software relationship

� ✓ Explored programming language evolution from machine code to Python

� ✓ Discovered why Python is perfect for beginners

Part III: Python Programming

� ✓ Set up Google Colab for cloud-based Python programming

� ✓ Wrote first Python programs with proper syntax

� ✓ Mastered Python data types (int, float, str, bool)

� ✓ Created and used variables with descriptive names

� ✓ Performed mathematical calculations with order of operations

� ✓ Formatted professional output using f-strings

31

� ✓ Preview of Python’s power through libraries

Practical Skills You Can Now Use:

� Write Python programs with variables and data types

� Use Python as a powerful calculator for real-world problems

� Format output professionally using f-strings

� Apply proper variable naming conventions

� Use Google Colab and Jupyter Notebooks for interactive programming

� Import and use Python libraries for advanced functionality

Looking Forward: Today’s three-part journey provides the foundation for everything we’ll
build in this course. You now understand:

� Programming’s role in every aspect of modern life

� Why Python is the perfect first programming language

� How to think like a programmer: breaking problems into steps

� The basics of writing professional Python code

� How development tools like Google Colab make learning interactive and fun

Preparation for Next Lecture

For Next Class:
Required Practice:

1. Complete all exercises from this handout (Exercises 1-6)

2. Create your first Google Colab notebook following Exercise 6

3. Try creating variables with different data types from the slides

4. Practice f-string formatting with your own examples

5. Read Deitel Chapter 2 (Variables and Simple Data Types)

Technical Setup:

� Ensure you can access Google Colab (colab.research.google.com)

� Create a Google account if you don’t have one

� Bring your laptop to every class session

� If you encounter technical issues, attend office hours for help

Next Lecture Preview: We’ll build on today’s foundation with more advanced Python
programming:

� Getting input from users with the input() function

� Making decisions with if statements and conditions

32

� Handling different types of data and conversions

� Building interactive programs that respond to user input

� More advanced string manipulation and formatting

Congratulations!
You’ve taken your first steps into the world of programming. Every expert was once a beginner

- the key is to keep practicing and never stop learning!

See you Wednesday for more Python adventures!

Remember: Programming is learned by doing, not just by reading. The more you practice,
the more comfortable you’ll become with thinking like a programmer!

33

