Lecture 2 Handout

Introduction to Python Programming

Prof. Rongyu Lin
Quinnipiac University
School of Computing and Engineering

Fall 2025

Required Reading

Textbook: Deitel Chapter 2, Pages 49-72

Learning Objectives

By the end of this lecture, you will be able to:

1.
2.

Create and manipulate variables with meaningful names following Python conventions
Work with different data types (integers, floats, strings) and check their types

Perform arithmetic calculations using all Python operators with proper precedence

. Format output professionally using f-strings and print() function features
. Get user input and convert between data types as needed

. Make decisions in programs using if statements and boolean expressions
. Compare values using relational operators and understand truthiness

. Build complete programs that solve real-world problems step by step

1 Today’s Learning Journey

This lecture builds directly on the foundations from Lecture 1, taking you from basic Python
concepts to writing interactive, decision-making programs. We’ll follow a structured five-part

journey:

Part I: Variables and Assignment (15 min)

e Creating and naming variables with proper conventions

e Understanding data types and memory concepts

e Using the type() function for verification

e Hands-on practice with personal data variables

Part II: Arithmetic Operations (15 min)
e Mastering all seven arithmetic operators

e Understanding operator precedence (PEMDAS)
¢ Using augmented assignment operators

e Building compound interest calculators

Part III: Input/Output and Strings (15 min)
e Advanced print() function features

e Professional f-string formatting techniques

e Getting and processing user input

e Creating interactive greeting programs

Part IV: Decision Making with if (15 min)
e Boolean values and comparison operators

e if statement syntax and Python indentation

e String comparisons and validation

e Building age verification and login systems

Part V: Objects and Wrap-up (15 min)
e Understanding Python’s object model

e Dynamic typing and object references

e Preview of descriptive statistics applications

e Reviewing accomplishments and next steps

Today’s Focus: Writing real Python programs that you can use immediately!

2 Review from Last Lecture

Before diving into new material, let’s quickly review the key concepts from Lecture 1:

2.1 Programming Concepts

e What is programming? Problem solving with precise computer instructions
e Why Python? Readable, powerful, versatile, and extremely popular

e Good programming language features: Easy to learn, expressive syntax, large com-
munity

2.2 Hands-On Experience From Last Class

e Used Google Colab for cloud-based Python development
e Wrote "Hello, World!” programs with proper syntax
e Created simple variables and performed basic calculations

e Explored Python as a powerful interactive calculator

This foundation gives us everything we need to build more sophisticated programs today!

3 Chapter 2 Overview - Your Python Foundation

Chapter 2 of the Deitel textbook focuses on the fundamental building blocks of Python program-
ming. Think of today’s material as learning the essential tools that every Python programmer

must master.

Variables

Arithmetic

Input/Output

Python Pro-
grammer

Objects

4 Part I: Variables and Assignment

4.1 Understanding Variables: Named Storage Containers

Variables are the foundation of all programming. Think of them as labeled boxes in a warehouse

where you can store different types of information.

Key Concepts:

e Each variable has a name (identifier) that you choose

e Each variable stores a value of some type

Decisions

Transform from ”Python curious” to ”"Python capable”
FEach concept builds on the previous one, just like learning to drive a car - you need to
master the fundamentals before you can navigate complex situations!

e Values have a type (integer, string, float, boolean)
e Variables can be changed throughout your program (that’s why they’re called ”variable”)

Real-World Analogy: Variables are like labeled boxes in a warehouse. Each box has a
label (the variable name) and contains something valuable (the data).

” Alice Johnson” 20 3.75

student_name student_age student_gpa

Computer Memory

Variables make programs flexible and reusable because you can change the values and your
calculations will automatically update!
4.2 Creating Variables with Assignment Statements

The fundamental syntax for creating variables in Python is simple yet powerful:

variable_name = value

The equals sign (=) is the assignment operator. It means "take the value on the right
and store it in the variable named on the left.”

Important Note: The assignment operator (=) is NOT the same as mathematical equality.
It’s an instruction to store a value, not a statement that two things are equal.

Listing 1: Creating Variables with Different Data Types

SIS I

Storing tezxt (strings) - note the quotes are required
student_name =

university =

major =

course_code =

Storing whole numbers (integers)
current_year = 2025

student_age = 20

credits_needed = 120
semester_number = 2

Storing decimal numbers (floats)
student_gpa = 3.75

tuition_cost = 52890.00
coffee_price = 4.95

tax_rate = 0.08

Storing True/False wvalues (booleans)
is_enrolled = True

has_scholarship = False

is_on_campus = True
completed_prerequisites = False

When you create a variable, Python allocates memory space and
creates a reference from your variable name to that memory location.

4.3 Variable Naming Rules and Best Practices

Python has both required rules that must be followed (or your program won’t work) and
recommended conventions that make your code professional and readable.

4.3.1 Required Rules (Must Follow)

e Must start with a letter (a-z, A-Z) or underscore (-)

e Can contain letters, numbers (0-9), and underscores

Cannot start with a number: 2names is invalid

Cannot contain spaces: first name is invalid

Cannot use special characters: student@email is invalid

Cannot use Python keywords: if, for, while, class, etc.

4.3.2 Recommended Style Guidelines (PEP 8)

Python has an official style guide called PEP 8 (Python Enhancement Proposal 8) that provides
recommendations for writing clean, readable code:

e Use snake_case: all lowercase letters with underscores between words

e Use descriptive names: total_price not tp

Avoid abbreviations: temperature not temp
e Use meaningful names: user_age not x

Constants use ALL_CAPS: MAX_ATTEMPTS = 3

Examples of Good and Bad Variable Names:

e Excellent: first_name, total_cost, is_valid_email
° name, cost, valid

e Poor: n, x, data, temp

e Invalid: 2names, first-name, user@email

4.4 Python is Case Sensitive!

This is a common source of errors for beginning programmers. Python treats these as completely
different variables:

All Different Variables!

student_name Student_Name STUDENT_NAME

Variable 1 Variable 2 Variable 3

W N

oW N

oW N

Common Beginner Mistake:

Create a wvartable
studentName =

Later try to use it (with different capitalization)
print (studentname) # ERROR: NameError: name ’studentmname’ %s not
defined

Choose one naming convention and stick to it consistently. Python recom-
mends snake_case.

4.5 Python Data Types Explained

Python automatically determines the type of data based on how you write the value. This is
called dynamic typing and makes Python very beginner-friendly.

4.5.1 1. Integers (int) - Whole Numbers

Integers represent whole numbers without decimal points:

age = 20

year = 2025
temperature = -5
score = 0

population = 8000000

4.5.2 2. Floating-Point Numbers (float) - Decimal Numbers

Floats represent numbers with decimal points:

gpa = 3.75

price = 29.99

temperature = 98.6
pi_approximation = 3.14159
percentage = 0.85

4.5.3 3. Strings (str) - Text Data

Strings represent text and must be enclosed in quotes (single or double):

name =
message = # Single quotes also work
address =

empty_string = # Valid empty string

course =

4.5.4 4. Booleans (bool) - True/False Values

Booleans represent logical true/false values:

is_student = True # Note: Capital T
has_license = False # Note: Capital F
is_enrolled = True

completed_course = False

Python automatically determines the type - you don’t need to declare it
explicitly like in some other languages!

4.6 The type() Function - Checking Data Types

Python provides the type() function to check what type of data you're working with. This is
incredibly useful for debugging and understanding your program’s behavior.

Listing 2: Using the type() Function

Create wariables of different types
student_name =

student_age = 20
student_gpa = 3.75
is_enrolled = True

Check their types - Python shows the class name

print (type (student_name)) # <class ’str’>
print (type (student_age)) # <class ’int’>
print (type (student_gpa)) # <class ’float’>
print (type(is_enrolled)) # <class ’bool ’>

You can also check types of literal walues
print (type (42)) <class ’int’>
print (type (3.14)) <class ’float’>
print (type ()) <class ’str’>
print (type (True)) <class ’bool’>

H oW W B

Why This Matters:

e Different types support different operations

e Helps debug when programs don’t work as expected
e Some functions require specific types as input

e Understanding types prevents common errors

4.7 Hands-On Exercise: Personal Data Variables
Let’s practice creating variables by building a personal information system:

Listing 3: Personal Data Variables Exercise - Complete Example

Personal Information Variables
Fill <n your own tnformation

Text information (strings)
my_name =

my_major =

my_hometown =

favorite_color =

Numertical information (integers and floats)

my_age = 20 # Your age (integer)
current_year = 2025 # Current year
credits_completed = 30 # Credits completed so far
my_gpa = 3.5 # Your GPA (float)
expected_graduation = 2027 # Expected graduation year

Boolean (True/False) information

is_on_campus = True # Do you live on campus?
has_car = False # Do you have a car?
is_working = True # Do you have a job?

TR W N R

W oW W W W NN NN NN NN N
[w N - (=) © 3] -~ (=) IS} C J

plays_sports = False # Do you play sports?

Display all 2nformation with professional formatting
print (* 50)

print ()

print(* 50)

print)

Basic tnformation

print (f)

print (£)

print (£)

print (£)

print (£)
print O

Academic information

print ()

print (£)

print (£)
print (£)
print O)

Lifestyle information

print ()

print (f)
print (£)

print (£)
print (£)
print ()

Check data types (for learning)

print ()

print (£)

print (£)

print (£)

print (f)

print(* 50)
print()

e Add more personal variables: birth month, number of siblings, etc.
e Calculate derived information: birth year, years until graduation

e Practice with different data types and see how they behave

5 Part II: Arithmetic Operations

5.1 Python’s Complete Set of Arithmetic Operators

Python provides seven arithmetic operators that let you perform mathematical calculations.
Understanding all of them and their proper usage is essential for any programming task.

Operator | Operation Example | Result
+ Addition 5+ 3 8
- Subtraction 5 -3 2
* Multiplication 5 % 3 15
** Exponentiation 5 %% 3 125
/ Division (Float) 5/ 3 1.6667...
// Floor Division 5//3 |1
yA Modulus (Remainder) 5% 3 2

e ** is exponentiation in Python, NOT ~ (which is used in some other languages)

-
00

Modulus (%) returns only the remainder

Regular division (/) always returns a float, even for whole number results

Floor division (//) returns only the quotient (whole number part)

Listing 4: Testing All Arithmetic Operators

Comprehenstve

operator demonstration

a, b =17, 5
print ()
print (£
print(* 40)
print (£) # 22
print (£) # 12
print (£) # 85
print (f) # 1419857 (17°5)
print (f) # 3.4
print (£) # 3 (quotient only)
print (f) # 2 (remainder only)
print(
print (£
)
print (f)

5.2 Understanding Floor Division and Modulus

Floor division and modulus are powerful operators that many beginners find confusing. Let’s
understand them with a practical example.

Real-World Example: Dividing 17 candies among 5 children

In Python:

o

o

o

o

o

o

o

o

o

o

Leftover

oo

o emain

Each child gets 3 candies

e 17 // 5 = 3 (each child gets 3 candies - the quotient)
e 17 % 5 = 2 (2 candies are left over - the remainder)

e Verification: 3 x 5 + 2 = 17 V
5.2.1 Practical Applications of Floor Division and Modulus

Listing 5: Practical Uses for Floor Division and Modulus

Time converstion exzample
total_minutes = 157

hours = total_minutes // 60 # How many complete hours?
remaining _minutes = total_minutes % 60 # How many minutes Lleft?
print (£

)

Output: 157 minutes equals 2 hours and 37 minutes

Check if a number <s even or odd
number = 23
if number % 2 == 0:

print (f)
else:

print (f)

Cycle through a list (useful for arrays/lists later)
day_number = 23
days_of_week = [5 > > s

)]
day_index = day_number % 7 # Will give us a number 0-6
print (£)
Distribution problem
total_items = 100
containers = 7
items_per_container = total_items // containers
leftover_items = total_items J containers
print (£
print (£)
print (£)

5.3 Operator Precedence - PEMDAS Rules

Python follows the standard mathematical order of operations, often remembered by
the acronym PEMDAS:

Order of Operations

Parentheses Exponents Multiply/Divide Add/Subtract
—
() * ’ /a //7 % +a -

Important Details:

10

e Operations of equal precedence are evaluated left to right
e Multiplication, division, floor division, and modulus have equal precedence

e Addition and subtraction have equal precedence (lower than multiplication/division)

Listing 6: Order of Operations Examples

Basic precedence exzamples

print()

print (£) # 14 (nmot 20!)

print (£) # 20

print (f) # 32 (exzponent first)
print (f) # 162 (ezponent first)

Left-to-right for same precedence
print (£) # 25.0 (not 1.0!)
print (f) # 1.0

Complex expressions
print (£) # 11
print (£) # 49

Use parentheses to make your intentions clear, even when not required:
e Unclear: price * quantity + tax

o Clear: (price * quantity) + tax

5.4 Augmented Assignment Operators

Augmented assignment operators provide a shortcut for modifying variables. They combine an
arithmetic operation with assignment in a single step.

Operator | Equivalent Long Form | Meaning
+= x=x+5 Add and assign
-= x=x-5 Subtract and assign
*= x=xx*5 Multiply and assign
/= x=x/5 Divide and assign
*k= X = X ** b Exponentiate and assign
//= x=x//5 Floor divide and assign
= x=x%5 Modulus and assign

Listing 7: Augmented Assignment Examples - Banking System

Bank account balance simulation

print ()

print(* 30)

account_balance = 1000.00

print (£)

Deposit money (addition)

deposit_amount = 250.00

account_balance += deposit_amount

print (£)

11

Pay monthly fee (subtraction)

monthly_fee = 15.00

account_balance -= monthly_fee

print (£)

Interest compounds monthly (multiplication)
monthly_interest_rate = 1.015 # 1.5) monthly interest
account_balance *= monthly_interest_rate

print (f)

Withdraw half for emergency (division)
account_balance /= 2
print (£)

print (* 30)
print ()

e More concise and readable code

Less typing and fewer opportunities for typos

Shows clear intent to modify a variable

Commonly used in professional code

5.5 Hands-On Exercise: Compound Interest Calculator

Let’s build a practical financial calculator that demonstrates all the arithmetic concepts we’ve
learned:

Listing 8: Complete Compound Interest Calculator

Compound Interest Calculator

Formula: Final Amount = Principal \times (1 + rate) “years
print(*x 60)

print()

print(* 60)

Investment parameters

principal = 1000.00 # Initial investment amount
annual_rate = 0.05 # 57 annual interest rate
years = 10 # Investment period in years

Display investment details

print()

print (£)

print (f)
print (£)

print)

Method 1: Using the compound interest formula directly

print()
final_amount = principal * (1 + annual_rate) ** years
interest_earned = final_amount - principal

total_growth_percentage = (final_amount / principal - 1) * 100

12

print (£)

print (£)
print (£)
print O

Method 2: Year-by-year simulation to show compound growth

print ()
print()

print (* 20)

current_amount = principal

print (£)

for year in range(l, years + 1):
yearly_interest = current_amount * annual_rate
current_amount += yearly_interest
print (f)

print (* 20)
print (£)
print)

Comparison with different interest rates

print()

print ()
print(* 45)

for rate in [0.03, 0.05, 0.07, 0.10]:

final = principal * (1 + rate) *x years
return_amount = final - principal
return_percentage = (final / principal - 1) * 100
print (£
)
print (* 60)
print ()

5.6 Math Module Preview

While Python’s built-in arithmetic operators handle most calculations, the math module pro-
vides advanced mathematical functions for more complex operations:

Listing 9: Math Module Functions

import math

Mathematical constants

print (£) # 3.14159. ..
print (£) # 2.71828. ..

Common functions

print (£) # 4.0
print (£) # 256.0
print (f) # 5
print (f) # 4

Trigonometric functions (angles in radians)

13

print (£) # 1.0
print (f) # 1.0

Convert between degrees and radians

angle_degrees = 45

angle_radians = math.radians(angle_degrees)

print (£)

6 Part III: Input/Output and Strings

6.1 Advanced print() Function Features

The print() function is more powerful than it first appears. Understanding its full capabilities
lets you create professional-looking output.

Listing 10: Advanced print() Function Techniques

Basic printing
print()

Printing multiple ttems (automatic space separation)

name =
age = 20

gpa = 3.75

print(, name, , age, , gpa)

Output: Student: Alice Age: 20 GPA: 3.75

Custom separator between ttems
print (, 5 , sep=)
Output: Apple, Banana, Cherry
print (, , , sep=)
Output: 2025-01-27

Custom ending (default ts newline \n)
print (, end=)

print ()

Output: Loading...Complete!

Praint to different destinations

import sys

print() # Goes to standard output
print(, file=sys.stderr) # Goes to error stream

No separator between ttems
print(s s , sep="") # Output: ABC

Multiple lines with escape characters
print() # \n creates new lines
print() # \t creates tab spacing

e sep= controls what goes between multiple items
e end= controls what goes at the end of the print statement

e file= controls where the output goes

14

13
14

16

17

19

20

6.2 Understanding Strings - Text Data in Detail

Strings are sequences of characters that represent text data. Understanding how to work with
strings is crucial for interactive programming.

6.2.1 Different Ways to Create Strings

Listing 11: String Creation Methods

Single quotes
namel =
messagel =

Double quotes (Python’s preference)
name2 =

message2 =

When to use each type

apostrophe_string = # Use double quotes
for apostrophes
quote_string = # Use single quotes

for internal quotes

Triple quotes for multi-line strings
long_message =

Empty strings are wvalid
empty_string =
empty_string2 =

6.2.2 Escape Characters for Special Formatting

Listing 12: Escape Characters in Strings

Common escape sequences

print () # \n creates mew line

print() # \t creates tab spacing

print() # \" 4dncludes quote in string

print() # \’ includes apostrophe in single-
quoted string

print() # \\ creates literal backslash

Raw strings (prefixz with r) treat backslashes literally
file_path = r
print (file_path)

Unicode characters
print () # \u2764 is heart symbol (heart emoji)
print () # \uw03C0 is π

6.3 F-String Formatting - The Modern Way

F-strings (formatted string literals) are Python’s most modern and powerful way to include
variables in strings. They’re fast, readable, and incredibly flexible.

15

6.3.1 Basic F-String Syntax and Usage

Listing 13: Basic F-String Examples

Bastic f-string syntaxz: f"text {vartable} more text”

name =
age = 20
university =

Simple wartiable insertion

print (£)
print (£)
print (£)

Multiple wvartiables in one string

print (£
)
Expressions imside braces
width = 10
height = 5
print (£)
print (£)

Function calls inside f-strings

import math

radius = 7

print (£)

6.3.2 Number Formatting with F-Strings

Listing 14: Advanced F-String Number Formatting

Decimal places formatting
price = 29.99567

print (£) # $29.96 (2 decimal places)

print (£) # $29.9957 (4 decimal places
)

Percentage formatting

success_rate = 0.847

print (£) # Success rate: 84.7)

print (£) # Success rate: 84.70)

Integer formatting with thousands separator

population = 1234567

salary = 75000

print (£) # Population: 1,234,567
print (f) # Annual salary: $75,000

Scientific mnotation
large_number = 1234567890
print (£) # Scientific: 1.23e+09

Field width and alignment

namel, name2 = ,
scorel, score2 = 95, 87

16

25 | # Right-aligned in specified width
26 | print (£) # Right-aligned
27 |print (f)

20 |# Left-aligned
30 |print (£) # Left-aligned
31 | print (£)

33 |# Center-aligned
34 | print (£) # Centered in 20 characters

6.3.3 Professional Output Formatting

Listing 15: Professional Receipt Example with F-Strings

1 |# Professtonal receipt formatting exzample
2 | product =

3 |price = 89.99

4 |quantity = 2

5 |[tax_rate = 0.0825

7 |# Calculate totals

¢ | subtotal = price * quantity

9 |tax_amount = subtotal * tax_rate
10 |[total = subtotal + tax_amount

12 |# Create professional rTeceipt

13 | print (* 40)

14 | print (£)

15 | print (* 40)

6 |print (£)

17 | print)

19 |print (f)

20 | print(* 40)

21 | print (£)
22 | print ()

24 | print (£)

25 | print (£ .format (tax_rate))
26 | print (* 40)

27 | print (£)

25 | print (* 40)

20 | print ()

6.4 Getting User Input with input() Function

The input() function transforms your programs from static calculators into interactive applica-
tions that respond to user needs.

6.4.1 Basic Input Function Usage

Listing 16: Basic Input Function Examples

1 |# Basic input - always returns a string
> |name = input()

17

10

T
© 0 N e oA W N

NN ONONN NN NN
® N O U s W N = O

»

print (£

Input with descriptive prompts

favorite_color = input (

print (£

Multiple
first_name =
last_name =
print (£

tnputs
input (
input (

6.4.2 Type Conversion for Numeric Input

Since input() always returns a string, you must convert to numbers for mathematical operations:

Listing 17: Converting Input to Numbers

Getting numbers requires type conversion

print(
print(* 20)
Method 1:
age_string = input(
age = int(age_string)
print (£

Method 2:
height = float (input (
weight float (input (

Calculate BMI
bmi =
print (£

Multiple numeric

print(
print(
gradel = float (input(
grade2 = float (input(
grade3 = float (input(
grade4 = float (input(

Calculate average
average =
print (£

Convert during

)

Convert after input

)

input (more

weight / (height **x 2)

inputs example

)

common)
))
))

))
))
))
))

(gradel + grade2 + grade3 + grade4) / 4

6.5 Type Conversion Functions Explained

Understanding type conversion is crucial for working with user input and different data types.

Function

Purpose

Example

int ()
float ()
str()
bool()

Convert to integer
Convert to decimal
Convert to string
Convert to boolean

int("42") — 42
float("3.14") — 3.14
str(42) — 7427
bool(1) — True

18

9

10
11
12

6.5.1 Common Conversion Scenarios and Pitfalls

Listing 18: Type Conversion Examples and Error Handling

Safe conversions

print()
number_string =
decimal_string
integer_number

100

print (£)
print (£

‘print(f
)

Boolean converstions

print()
print (£)

print (£)
print (£)
print (£)
print (£)

False

True

False (empty string)
True (nmon-empty string)
False (empty list)

H WO R R

Common conversion errors (commented out to avoid crashes)

print (int ("hello ")) # ValueError: invalid literal

print (float ("3.14.15")) # ValueError: could not convert

print (int ("3.14")) # ValueError: invalid literal (use float
first)

Safe conversion wtth error checking (preview of try/except)
user_input =

try:
number = int (user_input)
print (£)
except ValueError:
print (f)

6.6 Hands-On Exercise: Interactive Greeting Program

Let’s create a comprehensive interactive program that demonstrates all input/output concepts:

Listing 19: Complete Interactive Greeting Program

Interactive Personal Greeting Generator

print(* 60)

print ()
print(* 60)

print ()

print ()

Collect personal information

print ()

first_name = input()
last_name = input()

age = int (input())

hometown = input()
favorite_hobby = input()

19

61

62

63

64

Collect academic information

print ()
university = input()
major = input()
year_in_school = input(
)
Calculate derived information
current_year = 2025
birth_year = current_year - age
decade = birth_year // 10 * 10 # Round down to mnearest decade
days_alive_approx = age * 365 # Approzimate days alive

Create personalized greeting with professional formatting
print(+ * 60)

print (£)

print(* 60)

print ()

print (£)
print (£

print ()

print ()

print (£)
print (£)
print (£

print O

print ()

print (£)

print (£)

print (£)
print O

print ()
print (£)
print (£

print)

Generate personalized messages based on age
print()
if age < 18:

print (

)

elif age < 22:

print (

)

elif age < 25:

print (

else:

print (
)

20

print ()
print ()
if in hometown or in hometown:
print (
)
elif in hometown or in hometown:
print(

elif in hometown or in hometown:
print (

else:
print (£
)

print)
print(* 60)
print (£
print (* 60)

6.7 Building an Interactive Calculator

Let’s combine all our input/output knowledge to create a fully functional calculator:

Listing 20: Interactive Calculator Program

Interactive Python Calculator

print(* 50)

print ()

print (* 50)

print ()
print O

Get user input

first_number = float (input())
operation = input()
second_number = float (input ())
print)

print (f

print(* 30)

Perform calculation based on operation

if operation == 3
result = first_number + second_number
operation_name =

elif operation ==
result = fir
operation_na

elif operation == :
result = first_number * second_number
operation_name

elif operation == :
if second_number != 0:

number - second_number

st_
me

result = first_number / second_number
operation_name =
else:

21

result =
operation_name =
elif operation == 3
result =
operation_name =
elif operation ==

if second_number != O0:
first_number // second_number

result =
operation_name =
else:
result =
operation_name =
elif operation == 3

if second_number != O0:
first_number %

result =
operation_name =
else:
result =
operation_name =
RILEE &
result =
operation_name =

Display result

first_number **x second_number

second_number

print (£)
if isinstance(result, (int, float)):
print (f)
if isinstance(result, float) and result.is_integer ():
print (£)
else:
print (f)
print(* 50)
print ()

7 Part IV: Decision Making with if

7.1 Boolean Values - The Foundation of Decisions

Boolean values are the foundation of all decision-making in programming. Understanding how
they work is crucial for writing interactive and intelligent programs.

7.1.1 Boolean Data Type Explained

The boolean data type has only two possible values:
e True - Represents a positive, yes, or valid condition
e False - Represents a negative, no, or invalid condition
Important Notes:
e Boolean values are always capitalized: True and False
e They are used for yes/no, on/off, valid/invalid decisions

e Every condition in an if statement must evaluate to True or False

22

Listing 21: Boolean Variables and Expressions

Boolean literals

is_student = True
has_scholarship = False
is_on_campus = True
completed_prerequisites = False

Boolean ezpressions (evaluate to True or False)

age = 20

is_adult = age >= 18 # True
can_vote = age >= 18 # True
can_drink = age >= 21 # False

String expressions that return boolean
name =

has_long_name = len(name) > 10 # False
starts_with_a = name.startswith() # True

print ()
print (£)

print (£)

print (£)

print (£)

print (f)
print (£)

7.2 Comparison Operators for Decision Making

Comparison operators let you compare values and return boolean results. They are essential
for creating conditions in if statements.

Operator | Meaning Example | Result
== Equal to 5 ==5 True
1= Not equal to 5 1=3 True
< Less than 3<5 True
<= Less than or equal 5 <=5 True
> Greater than 7>56 True
>= Greater than or equal | 5 >= 3 True

7.2.1 Working with Variables in Comparisons

Listing 22: Comparison Operators with Variables

Numeric comparisons
age = 20
minimum_voting_age = 18
drinking_age = 21

print ()

print (£)

print (f) #
True

print (£) # True

print (f) #
False

print (£) # True

23

12

13

14

16
17
18
19

20

NN N
W N =

~

NN N NN N
0 [} C

String comparisons
namel =
name2 =
name3d =

print ()

print (£)
print (f)
print (f)

True
True
True

(alphabetical)

Grade comparison ezample
test_score = 85
passing_score = 60
excellent_score = 90

print ()

print (£)

print (£)
print (£)
print (£)

Using assignment (=) instead of equality (==)

e Wrong: if age = 18: (assignment)

e Correct: if age 18: (comparison)

7.3 The if Statement - Basic Syntax and Structure

The if statement is the foundation of program logic. It allows your program to make decisions
and execute different code based on conditions.

7.3.1 Basic if Statement Structure

if condition:
statement_to_execute
another_statement

Key Points:

e The condition must evaluate to True or False

e Colon (:) is required after the condition

e Indented code block executes only if condition is True

e Python uses 4 spaces for indentation (standard)

Listing 23: Basic if Statement Examples

Saimple
age = 20
if age >= 18:

print ()

print ()

1f statement

1f statement with calculations

24

10
11

12

14

16

18

19

[~
B W N = O

ot

[N O I

~

1

2

score = 95
if score >= 90:
print ()
print ()
letter_grade =
gpa_points = 4.0

Multiple separate <f statements

temperature = 75
if temperature > 80:
print ()
print ()

if temperature < 60:
print ()
print ()

if temperature >= 60 and temperature <= 80:
print ()
print ()

7.4 Understanding Python Indentation

Indentation is not just for readability in Python - it’s how Python determines which statements
belong together in code blocks.

Main Program ‘ age = 20 ‘
‘ if age >= 18: ‘
if Block print ("Adult!") ‘
print ("Can
vote!")

Main Program print ("Program
continues")

7.4.1 Indentation Rules and Common Errors

Python Indentation Rules:
e Use 4 spaces for each indentation level (Python standard)
e All statements at the same level must have identical indentation
e if statements, loops, and functions all require indentation
e Never mix tabs and spaces (use spaces consistently)
Common Indentation Errors:

Listing 24: Indentation Errors to Avoid

ERROR: Missing indentation
age = 20

25

if age >= 18:
print() # IndentationError: ezpected an indented
block

ERROR: Inconsistent 2ndentation
if age >= 18:

print() # 4 spaces
print() # 8 spaces - IndentationError
CORRECT: Consistent indentation
if age >= 18:
print () # 4 spaces
print () # 4 spaces
print () # 4 spaces

7.4.2 Students Often Struggle Here: Advanced Indentation Tips
Why Students Find Indentation Difficult:

e Coming from other languages: Many languages use {} instead of indentation
e Invisible characters: Spaces and tabs look the same but aren’t!
e Inconsistency: Mixing different amounts of spaces

e Nested structures: Multiple levels of indentation can be confusing

1. Set up your editor: Configure to show spaces/tabs visually

2. Use spaces only: Never mix tabs and spaces

3. Be consistent: Always use exactly 4 spaces per level

4. Check alignment: All statements at same level must align perfectly

5. Practice nested structures: Understand how multiple levels work

Listing 25: Advanced Indentation: Nested if Statements

Multiple indentation levels exzample

age = 22
has_license = True
temperature = 85
if age >= 18:
print () # Level 1: 4 spaces
if has_license:
print() # Level 2: 8 spaces
if temperature > 80:
print () # Level 3: 12 spaces
print () # Level 3: 12 spaces
print() # Level 2: 8 spaces
print () # Level 1: 4 spaces
print() # Main level: O spaces

Visual Indentation Guide:

26

Level Spaces | Example
Main program | 0 print("Hello")
if block 4 print("Inside if")
Nested if 8 print ("Nested")
Triple nested | 12 print ("Deep")

Red Flags - Fix These Immediately:

e Lines that should be indented but aren’t

e Inconsistent spacing within the same block

e Mixing tabs and spaces (invisible but causes errors!)

e Copy-pasting code without checking indentation

7.5 String Comparisons and Validation

String comparisons are essential for user input validation and creating interactive programs.
7.5.1 Case-Sensitive String Comparisons

Listing 26: String Comparison Examples

1 |# Case-sensitive string comparison
> |namel
3
!

name?2
name3

6 |print ()

7 |print (£) # False
s |print (£) # False
o |print (£) # False

11 |# Making case-insensitive comparisSons
12 |user_input =

13 |if user_input.lower () ==

14 print ()

16 |# Multiple acceptable responses

17 |response = input()
1s |if response.lower () in [5 1:

19 print ()

20 | else:

1 print ()

Email wvalidation exzample
email = input()
if in email and in email:
print ()
RILEE &
print ()

(SIS U]

NN NN N

~

N
00

7.5.2 String Methods for Validation

27

Listing 27: String Validation Methods

Password strength checking
password = input ()

print ()

print (£)

print (£)
print (£)

print (f)

print (£)

Name wvalidation
name = input()
if name.isalpha():
print ()
else:
print ()

Phone number wvaltdation (simple)
phone = input ()
if phone.isdigit() and len(phone) == 10:
print ()
else:
print ()

7.6 Hands-On Exercise: Age Verification System

Let’s build a comprehensive age verification program that demonstrates all the concepts we’ve
learned:

Listing 28: Complete Age Verification System

Comprehensive Age Verification System

print (* 60)

print ()

print(* 60)

print ()
print)

Get user information with walidation
while True:
try:
name = input()
if name.strip(): # Check tf mname %s not empty
break
else:
print ()
except:
print ()

while True:
try:
age = int (input ())
if age >= 0 and age <= 120: # Reasonable age range
break
else:
print ()
except ValueError:

28

print(

print (£
print (* 60)

Age-based eligibility checks
print ()

Basic age categories
if age < 13:
print (
category =
elif age < 20:
print (
category =
elif age < 65:
print (
category
else:
print (
category

print (f
print OO

Specific privileges and responsibilities

print ()
eligibilities = []

if age >= b:
eligibilities.append(

if age >= 13:
eligibilities.append(

if age >= 14:
eligibilities.append(

if age >= 16:
eligibilities.append(
eligibilities.append(

if age >= 17:
eligibilities.append(

)

if age >= 18:
eligibilities.append(
eligibilities.append(
eligibilities.append(
eligibilities.append(

if age >= 21:
eligibilities.append(
eligibilities.append(

if age >= 25:
eligibilities.append(

eligibilities.append(
)
if age >= 30:
eligibilities.append(

29

so |1if age >= 35:

81 eligibilities.append(
)
g2 |if age >= 65:
83 eligibilities.append(
84 eligibilities.append(
)

g6 |# Display eligibilities
g7 |for eligibility in eligibilities:
88 print (eligibility)

90 |if not eligibilities:
91 print (
)

93 | print ()

95 | # Spectial messages based on age milestones
96 | print ()

o7 |1f age
98 print
99 | elif age
100 print
101 |elif age
102 print
03 |elif age
104 print (

105 |elif age >= 100:
106 print (

Il
1
—
(o))

]
—
(00]

21:

N~ ~ 1~

65:

107
w8 |# Calculate some fun facts

109 | current_year = 2025

110 | birth_year = current_year - age

111 |days_alive = age * 365 # Approzimate
112 [next_milestone = None

114 |1f age < 16:

115 next_milestone = 16
116 |elif age < 18:
117 next_milestone = 18
118 |elif age < 21:
119 next_milestone = 21
120 |elif age < 25:
121 next_milestone = 25

123 print()

124 | print ()
125 | print (£
126 |print (£
127 |if next_milestone:
128 years_to_milestone = next_milestone - age
129 print (£
)
30
131 | print (* 60)
132 | print (£

133 | print (

30

134

print(

* 60)

7.7 Building Login Authentication Systems

Let’s create a secure login system that demonstrates string comparisons and decision-making;:

Listing 29: Secure Login Authentication System

Secure Login Authentication System

print(* 50)
print()
print(* 50)

Define wvalid user credentials
valid_users = {

}

Track login attempts
max_attempts = 3
attempts = 0

print (
print (
print (£

Login loop

while attempts < max_attempts:
username input (
password = input(

attempts += 1

Check 11f username extsts
if username in valid_users:

) .lower () .strip ()
)

Check <f password %s correct

if password == valid_users[username]:
print (f
print (£

Different messages based on user type

if username ==
print (
print (

elif usermname ==
print (
print (

elif username ==
print(
print (

elif username ==
print (
print (

31

50

63

print (£
break

else:
remaining = max_attempts - attempts
if remaining > O:
print (f)
print (£)
else:
print (f)
else:
remaining = max_attempts - attempts
if remaining > O:
print (f)
print (f)
else:
print (£)

Handle fatled login

if attempts >= max_attempts:
print ()
print ()
print ()

print(+ *x 50)
print ()

8 Part V: Objects and Wrap-up

8.1 Python’s Object Model Explained

Understanding that ”everything in Python is an object” is fundamental to mastering the lan-
guage. This concept explains many of Python’s behaviors and capabilities.

8.1.1 What Are Objects?

In Python, objects are instances of data types that contain both data (attributes) and func-
tionality (methods):

e Objects are instances of a data type (class)
e Every value has a type and identity in memory
e Objects have attributes (data) and methods (functions)

e Even simple values like numbers and strings are objects

32

15

NN NN = e e
N = =T v T B

V)
ot

Object in
Memory
(contains data
& methods)

String Object: "Alice"

<class ’str’>
Variable Name

DATA (Attributes)

(stores reference)

= Index: 0 1 2 3 4
Variable references R Character: ” A ”]? ” 37 ” e ”ah
name length = 5

METHODS (Built-in Functions)
name .upper () — "ALICE"

name.lower() — "alice"
name.split() — ["Alice"]
name.replace("A", "B") — "Blice"

len(name) — 5 (built-in function)

8.1.2 Examples of Python Objects

Listing 30: Everything is an Object in Python

Numbers are objects with methods
number = 42
print (£)
print (£)
print (f) # Show first 5 methods
Strings are objects with many wuseful methods
text =
print (£)
print (£)
print (£)
print (£)
print (f)
print (£
)

Even functions are objects!
print (£)

print (£

Lists
my_list
print (£
print (£
my_list
print (f

are objects
= [1, 2, 3]

.append (4)

)
(preview of future topic)

)
)
Using a method to modify the
)

list

8.2 Dynamic Typing in Python

Learning Objective: Understand how Python variables can hold different types of data and
why this flexibility is powerful for programming.

33

gl W N =

8.2.1 What Does Dynamic Typing Mean?

Dynamic typing means that the same variable can hold different types of data throughout your
program. Unlike some programming languages where you must declare what type of data a
variable will hold, Python figures this out automatically.

Key Benefits:

e Flexibility: Variables can adapt to different data as your program runs
e Simplicity: No need to declare types in advance
¢ Rapid Development: Write code faster without worrying about type declarations

Real-World Analogy: Think of a variable like a box that can hold different things at
different times - sometimes a number, sometimes text, sometimes a list of items.

8.2.2 Dynamic Typing in Action

Let’s see how one variable can transform to meet different needs:

Listing 31: Dynamic Typing - Same Variable Multiple Types

Same wvariable name, different data types!

user_data = # Start with a string

print (£)

user_data = 25 # Now 4t holds an integer age
print (f)

user_data = 85.5 # Now 1t holds a float grade
print (£)

user_data = True # Now 1t holds a boolean status
print (£)

What Just Happened? The variable user_data successfully held four completely different
types of information. Python automatically detected each type and handled the transitions
seamlessly.

Practical Benefits in Real Programming:

e User Input Processing: Variables can start as strings from input(), then convert to
numbers for calculations

Data Analysis: Variables can hold different data structures as you process information

Error Handling: Variables can hold error messages (strings) or valid results (numbers)

Flexibility: Change what your program does without rewriting variable declarations

8.2.3 Understanding Variable References

Key Concept: When you assign a value to a variable in Python, you’re creating a reference
to an object in memory, not copying the value itself.

Why This Matters: Understanding references helps you predict how Python behaves and
avoid common programming mistakes.

34

w N

Listing 32: Variable References Explained

Two wartables can point to the same object

original_score = 95

final_score = original_score # Both wvariables reference the same
object

print (£)
print (£)
print (£) # True

Changing the reference doesn’t affect the original

final_score = 98 # final_score now references a
different object

print (f)

print (£) # Still 95!

print (£) # Now 98

print (£) # False

Practical Applications:
e Memory Efficiency: Python reuses objects when possible to save memory

e Comparison Operations: Understanding the difference between == (same value) and
is (same object)

e Function Parameters: How variables are passed to functions (by reference)

Simple Rule: For basic data types (numbers, strings, booleans), you rarely need to worry
about references. Python handles the details automatically!

8.3 Preview: Descriptive Statistics with Python

Now let’s see how today’s fundamental concepts connect to real data science applications. We’ll
explore this step-by-step to show how variables, arithmetic, and decision-making combine to
solve analytical problems.

8.3.1 What Are Descriptive Statistics?

Definition: Descriptive statistics are numbers that summarize and describe the important
features of a dataset. They help us understand what our data tells us.
The Three Essential Statistics:

e Mean (Average): The typical value - calculated by adding all values and dividing by
the count

e Range: The spread - difference between the highest and lowest values

¢ Minimum/Maximum: The extreme values in our dataset

8.3.2 Simple Example: Understanding the Mean

Let’s start with a simple example using today’s arithmetic and variable concepts:

Listing 33: Calculating a Mean - Step by Step

Step 1: Store data in wvartables (using today’s wvartable skills)
quizil 85
quiz2 92

35

quiz3 = 78
Step 2: Calculate total using artthmetic from today
total_points = quizl + quiz2 + quiz3

print (£)

Step 3: Calculate mean using division

num_quizzes = 3
mean_score = total_points / num_quizzes
print (f)

Step 4: Find range using today’s comparison concepts
highest = max(quizl, quiz2, quiz3)

lowest = min(quizl, quiz2, quiz3)
score_range = highest - lowest
print (£)

8.3.3 Practical Application: Student Grade Analysis
Now let’s build a complete grade analyzer using today’s concepts:

Listing 34: Grade Analyzer Using Today’s Skills

Get student data using <input () from today

student_name = input()
gradel = float (input())
grade2 = float (input())
grade3 = float (input())

Calculate statistics using today’s arithmetic
total = gradel + grade2 + grade3

average = total / 3

highest = max(gradel, grade2, grade3)

lowest = min(gradel, grade2, grade3)

Display results using f-strings from today
print (£)
print (£)

print (£)

print (£)

Make decisions using if statements from today
if average >= 90:
grade_letter =
elif average >= 80:
grade_letter =
elif average >= 70:
grade_letter =
RILBaE &
grade_letter =

print (£)

8.3.4 Connection to Today’s Learning

Notice how this statistical application directly uses every major concept from today’s lecture:

e Variables: Store individual grades and calculated results

36

e Arithmetic Operations: Addition for totals, division for averages

e Input/Output: Get user data and display professional results

e Decision Making: Assign letter grades based on numerical scores

e Type Conversion: Convert input strings to numbers for calculations

Key Insight: Complex data science applications are built from the same fundamental
building blocks you learned today!
8.3.5 Python Tools for Future Statistical Work
Built-in Functions We’ll Master:

e sum() - Calculate totals
e len() - Count items
e min() and max() - Find extremes

e sorted() - Arrange data in order
Libraries We’ll Learn:

e statistics module: mean(), median(), mode(), stdev()
e NumPy: Advanced numerical computing with arrays
e pandas: Data manipulation and analysis

e matplotlib: Creating professional charts and graphs
Real-World Applications:

e Analyzing survey data and customer feedback

Financial analysis and investment tracking

Sports statistics and performance metrics

Scientific research data processing

e Business intelligence and reporting

9 Today’s Accomplishments

Let’s review everything you’ve mastered in today’s comprehensive Python programming jour-
ney:
9.1 Part I: Variables and Assignment v
Skills Mastered:
e Created variables with meaningful, descriptive names

e Worked confidently with all data types (int, float, str, bool)

Used the type() function to verify and debug data types

Applied Python naming conventions (PEP 8) professionally

Built a complete personal information system

37

9.2 Part II: Arithmetic Operations v/
Skills Mastered:

e Used all seven arithmetic operators (4, -, *, **, /, //, %) correctly

Applied operator precedence rules (PEMDAS) to complex expressions

Implemented augmented assignment operators (+=, -=, etc.) efficiently

Built sophisticated financial calculators (compound interest, mortgage)

Solved real-world mathematical problems with code

9.3 Part III: Input/Output and Strings v/
Skills Mastered:

e Mastered advanced print() function features with custom separators and endings

Created professional output using powerful f-string formatting

Got and processed user input with proper type conversion

Built interactive programs that respond to user needs

Developed a complete greeting system and calculator

9.4 Part IV: Decision Making with if v
Skills Mastered:

e Used boolean values and comparison operators for logical decisions

Implemented if statements with proper Python indentation

Created interactive programs with user authentication

Performed string comparisons and input validation

Built comprehensive age verification and login systems

9.5 Part V: Objects and Python Foundation v/
Skills Mastered:

e Understood Python’s object model and dynamic typing
e Explored object identity and references in memory
e Previewed statistical applications of programming concepts

e Connected today’s fundamentals to future data science work

38

10

Interactive Programs Built Today

Seven Complete Programs You Created:

1.

11

Personal Data Variables System - Comprehensive information storage and display

. Compound Interest Calculator - Financial mathematics with real formulas

Restaurant Bill Calculator - Complex arithmetic with tax and tip calculations

. Interactive Greeting Generator - Advanced input processing and personalization
. Python Calculator - Full-featured calculator with error handling

. Age Verification System - Sophisticated decision-making with multiple conditions

Login Authentication System - Secure user authentication with validation

Variable creation, manipulation, and validation
User input processing and type conversion
Mathematical calculations and financial modeling
Conditional logic and decision trees

String processing and comparison techniques
Professional output formatting and user experience
Error handling and input validation

Program structure and organization

Next Steps in Your Python Journey

11.1 Building on Today’s Foundation

Today’s five-part journey provides the solid foundation for everything we’ll build in this course.
You now understand:

How to think like a programmer and break problems into steps

The core building blocks of Python: variables, arithmetic, input/output, and decisions
How to write professional, readable code that solves real-world problems

The object-oriented nature of Python and its practical implications

How basic programming concepts connect to advanced data science applications

39

11.2 Coming in Future Lectures

Lecture 3: Functions and Error Handling
e Writing reusable functions with parameters and return values
e Understanding scope and local vs global variables
e Handling errors gracefully with try/except blocks
e Code organization and modularity principles
e Building function libraries for common tasks
Lecture 4: Lists and Data Structures

e Creating and manipulating lists of data

Working with tuples and dictionaries

Iterating through data with loops

Processing collections of information

Building database-like systems

11.3 Practice Opportunities
Immediate Extensions (Try This Week):

e Extend today’s calculator with more operations (square root, percentage)

Create a personal budget calculator with income and expenses

Build a quiz program with multiple questions and scoring

e Add more validation to the login system (password strength, account lockout)
e Experiment with different f-string formatting options

Challenge Projects (For Advanced Practice):

e Grade point average calculator with weighted courses

Investment portfolio tracker with multiple stocks

Temperature converter with multiple units (Celsius, Fahrenheit, Kelvin)

Simple encryption/decryption program using ASCII values

Text-based adventure game with player choices

40

12 Study Recommendations

Review Materials:
e Re-read Deitel Chapter 2 (pages 49-72) with today’s hands-on experience
e Practice all seven interactive exercises from today’s handout
e Work through the textbook’s self-review exercises and answers
e Experiment with variations of today’s programs
Hands-On Practice:
e Create your own versions of today’s programs with personal data
e Try different input validation scenarios
e Experiment with edge cases (What happens with negative numbers? Empty strings?)
e Practice debugging by intentionally introducing errors and fixing them
Conceptual Understanding:
e Make sure you understand WHY each concept is important
e Connect programming concepts to real-world applications
e Practice explaining concepts to others (teaching reinforces learning)

e Ask yourself: "How could I use this in my field of study?”

13 Key Takeaways and Summary

Today’s Transformation:

You started today with basic Python knowledge and now have the core skills to build
meaningful, interactive programs. The five-part journey we completed represents the essential
foundation every Python programmer must master.

e Problem Decomposition: Breaking complex tasks into manageable steps

e Data Management: Creating and manipulating variables of different types
e Mathematical Computing: Performing calculations with proper precedence
e User Interaction: Creating programs that respond to user input

e Decision Logic: Building programs that make intelligent choices

e Code Organization: Writing readable, maintainable code with good style

e Professional Output: Creating polished, user-friendly interfaces

The Foundation is Set: Variables, arithmetic, input/output, and decisions give you the
tools to build programs that solve real-world problems. From here, we’ll add more sophisticated
features, but everything builds on what you learned today.

Programming is learned by doing - keep coding, keep experimenting, and keep
building!

41

Congratulations on Your Python Programming Achievement!
You’ve built a solid foundation in Python programming. Every expert programmer started
exactly where you are now. The key is persistence, practice, and curiosity about what’s
possible!

Programming is a journey of continuous learning and growth. Today you took significant
steps forward - tomorrow we’ll build even more powerful and sophisticated programs!

42

