
Lecture 4 Handout
List Comprehensions

INF 605 - Introduction to Programming - Python

Prof. Rongyu Lin
Quinnipiac University

School of Computing and Engineering

Fall 2025

Required Reading

Textbook: Chapter 5.12, List Comprehensions
Reference Notebooks: ch05/05 12.ipynb (list comprehensions), ch05/05 02.ipynb (basic
lists), ch05/05 05.ipynb (slicing)

Prerequisites Review

Building on Your Enhanced Knowledge Foundation:
From Lectures 1-2: Complete mastery of variables, data types, arithmetic operations, in-

put/output, decision structures (if/elif/else), boolean logic, comparison operators, string meth-
ods
From Enhanced Lecture 3: List fundamentals (creation, indexing, slicing, len()), for
loops with range() in all forms, while loops, nested control structures, boolean operators
(and, or, not)

Transformation Goal: This lecture transforms you from loop-based list building to
comprehension-based data processing - a more elegant and efficient programming ap-
proach.

Learning Objectives

By the end of this lecture, you will be able to:

1. Master basic list comprehensions using [expression for item in iterable] syntax effi-
ciently

2. Understand mapping patterns to transform data using expressions within compre-
hensions

3. Implement filtering techniques using conditional comprehensions with if clauses

4. Process existing data structures applying comprehensions to lists, strings, and ranges

5. Recognize comprehension opportunities to replace loop-based list building with el-
egant alternatives

1

6. Apply expression evaluation understanding how comprehensions process each element

7. Build data processing pipelines creating sequences of comprehensions for complex
transformations

8. Demonstrate performance benefits understanding efficiency advantages over tradi-
tional loops

1 Today’s Learning Journey: From Loops to Comprehensions

This lecture introduces the elegant world of list comprehensions - a concise, powerful way to
create and process lists. We’ll transform your loop-based thinking into functional programming
patterns that are more readable, efficient, and Pythonic.

Part I: The ”Why” - From Loop Patterns to Comprehensions (15 min)

� Understanding the motivation: Why comprehensions exist

� Comparing traditional for loop + append patterns with comprehension syntax

� Performance and readability advantages

� Introduction to functional programming concepts

Part II: Basic Comprehension Syntax and Structure (20 min)

� Mastering [expression for item in iterable] syntax

� Expression evaluation process and iteration mechanics

� Converting simple range-based loops to comprehensions

� Working with different iterable types (ranges, lists, strings)

Part III: Mapping - Data Transformation Operations (15 min)

� Understanding mapping as data transformation

� Using arithmetic operations and math functions in expressions

� String processing and text transformation

� Creating calculated datasets and mathematical sequences

Part IV: Filtering - Conditional Processing (15 min)

� Adding if conditions for selective processing

� Complex boolean conditions using and, or, not operators

� Combining filtering with transformation

� Building data validation and selection systems

Part V: Advanced Patterns and Real-World Applications (10 min)

� Processing existing lists and practical data scenarios

� Performance comparison with traditional approaches

� Best practices and code quality guidelines

� Connection to functional programming paradigms

2

2 Part I: The Transformation - Why List Comprehensions Mat-
ter

Imagine you’re a factory manager. You have two ways to process products:
Traditional Assembly Line (Loop Approach):

1 # Traditional way: Create empty container , then fill it step by step

2 processed_items = [] # Empty container

3 for item in raw_materials: # Process each item

4 processed_item = transform(item) # Transform the item

5 processed_items.append(processed_item) # Add to container

Modern Processing Unit (Comprehension Approach):

1 # Modern way: Transform and collect in one elegant operation

2 processed_items = [transform(item) for item in raw_materials]

Both produce the same result, but the comprehension approach is:

� More concise - One line instead of four

� More readable - Intent is immediately clear

� More efficient - Python optimizes comprehensions internally

� More Pythonic - Follows Python’s philosophy of elegant simplicity

2.1 Real Transformation Example: Building a Grade List

Loop-Based Approach (What You Know):

1 # Traditional way using for loop + append pattern from Lecture 3

2 raw_scores = [85, 92, 78, 96, 88, 73, 91, 84]

3 curved_grades = [] # Create empty list

4

5 print("Processing grades with loop:")

6 for score in raw_scores: # Iterate through each score

7 curved_grade = score + 5 # Apply 5-point curve

8 curved_grades.append(curved_grade) # Add to result list

9 print(f" {score} -> {curved_grade}")

10

11 print(f"Result: {curved_grades}")

Comprehension Approach (What You’re Learning):

1 # Modern way using list comprehension

2 raw_scores = [85, 92, 78, 96, 88, 73, 91, 84]

3

4 # Transform all scores in one elegant line

5 curved_grades = [score + 5 for score in raw_scores]

6

7 print(f"Original: {raw_scores}")

8 print(f"Curved: {curved_grades}")

9 # Output: [90, 97, 83, 101, 93, 78, 96, 89]

The Magic: The comprehension does in one line what the loop does in four, and it’s more
efficient!

3

3 Part II: Basic List Comprehension Syntax - The Foundation

List comprehensions have a specific anatomy that you must master. Think of it like a sentence
structure in English - once you understand the pattern, you can create infinite variations.

3.1 The Comprehension Anatomy

[
expression

transform each item

for

keyword

item

variable name

in

keyword
]

iterable

data source

Basic Pattern: [expression for item in iterable]

3.2 Building Your First Comprehensions

Example 1: Transform Numbers Using range()

1 # Create list of squares from 1 to 5

2 # Traditional way:

3 squares = []

4 for number in range(1, 6):

5 square = number ** 2

6 squares.append(square)

7 print(f"Traditional: {squares}")

8

9 # Comprehension way:

10 squares = [number ** 2 for number in range(1, 6)]

11 print(f"Comprehension: {squares}")

12 # Both output: [1, 4, 9, 16, 25]

Step-by-Step Evaluation:

� range(1, 6) produces: 1, 2, 3, 4, 5

� For number = 1: expression = 1 ** 2 = 1

� For number = 2: expression = 2 ** 2 = 4

� For number = 3: expression = 3 ** 2 = 9

� For number = 4: expression = 4 ** 2 = 16

� For number = 5: expression = 5 ** 2 = 25

� Result: [1, 4, 9, 16, 25]

Example 2: Using All Three Forms of range()

1 # Form 1: range(stop) - Basic counting

2 first_ten = [x for x in range (10)]

3 print(f"First ten: {first_ten}")

4 # Output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

5

6 # Form 2: range(start , stop) - Custom range

7 teens = [age for age in range(13, 20)]

8 print(f"Teen ages: {teens}")

9 # Output: [13, 14, 15, 16, 17, 18, 19]

10

11 # Form 3: range(start , stop , step) - Custom increment

4

12 even_numbers = [num for num in range(0, 21, 2)]

13 print(f"Even numbers: {even_numbers}")

14 # Output: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Example 3: Processing Strings

1 # Transform string characters

2 word = "Python"

3 uppercase_chars = [char.upper() for char in word]

4 print(f"Characters: {uppercase_chars}")

5 # Output: [’P’, ’Y’, ’T’, ’H’, ’O’, ’N’]

6

7 # Create list of character codes

8 char_codes = [ord(char) for char in word]

9 print(f"ASCII codes: {char_codes}")

10 # Output: [80, 121, 116, 104, 111, 110]

3.3 Common Beginner Patterns

Pattern 1: Mathematical Transformations

1 # Multiple mathematical operations

2 numbers = [1, 2, 3, 4, 5]

3

4 # Double each number

5 doubled = [x * 2 for x in numbers]

6 print(f"Doubled: {doubled}")

7

8 # Apply formula: (x^2 + 1) / 2

9 formula_results = [(x**2 + 1) / 2 for x in numbers]

10 print(f"Formula: {formula_results}")

Pattern 2: String Processing

1 # Process list of names

2 names = ["alice", "bob", "charlie"]

3

4 # Capitalize first letter

5 capitalized = [name.capitalize () for name in names]

6 print(f"Capitalized: {capitalized}")

7 # Output: [’Alice ’, ’Bob ’, ’Charlie ’]

8

9 # Create email addresses

10 emails = [name + "@university.edu" for name in names]

11 print(f"Emails: {emails}")

12 # Output: [’alice@university.edu ’, ’bob@university.edu ’, ’

charlie@university.edu ’]

4 Part III: Mapping Operations - Data Transformation

Mapping is a fundamental concept in functional programming. It means ”apply the same
transformation to every item in a collection.” Think of it like a stamp that transforms every
document it touches.

4.1 Real-World Mapping Analogy: Photo Filter

When you apply an Instagram filter to a photo, you’re mapping a transformation across every
pixel:

5

1 # Pseudocode for photo filter

2 filtered_pixels = [apply_sepia_filter(pixel) for pixel in photo_pixels]

4.2 Mathematical Mapping Examples

Temperature Conversion System:

1 # Convert Celsius temperatures to Fahrenheit

2 celsius_temps = [0, 10, 20, 30, 37, 100]

3

4 # Formula: F = (C * 9/5) + 32

5 fahrenheit_temps = [(temp * 9/5) + 32 for temp in celsius_temps]

6

7 print("Temperature Conversion:")

8 for c, f in zip(celsius_temps , fahrenheit_temps):

9 print(f" {c}\ textdegree C = {f}\ textdegree F")

10

11 # Output:

12 # 0\ textdegree C = 32.0\ textdegree F

13 # 10\ textdegree C = 50.0\ textdegree F

14 # 20\ textdegree C = 68.0\ textdegree F

15 # 30\ textdegree C = 86.0\ textdegree F

16 # 37\ textdegree C = 98.6\ textdegree F

17 # 100\ textdegree C = 212.0\ textdegree F

Financial Calculations:

1 # Calculate compound interest for different principals

2 import math

3

4 principals = [1000, 5000, 10000, 25000]

5 rate = 0.05 # 5% annual rate

6 years = 10

7

8 # Formula: A = P(1 + r)^t

9 final_amounts = [principal * (1 + rate) ** years for principal in

principals]

10

11 print("Investment Growth (10 years at 5%):")

12 for principal , final in zip(principals , final_amounts):

13 profit = final - principal

14 print(f" ${principal:,} -> ${final:,.2f} (profit: ${profit :,.2f})"

)

4.3 String Mapping Operations

Text Processing Pipeline:

1 # Process customer feedback data

2 feedback_raw = [" GREAT SERVICE! ", "good value", " Poor Quality ",

"EXCELLENT!"]

3

4 # Step 1: Clean and standardize

5 cleaned = [text.strip().lower() for text in feedback_raw]

6 print(f"Cleaned: {cleaned}")

7 # Output: [’great service!’, ’good value ’, ’poor quality ’, ’excellent

!’]

6

8

9 # Step 2: Create display format

10 display_format = [text.title() for text in cleaned]

11 print(f"Display: {display_format}")

12 # Output: [’Great Service!’, ’Good Value ’, ’Poor Quality ’, ’Excellent

!’]

13

14 # Step 3: Extract sentiment keywords

15 sentiment_words = [text.split()[0] for text in cleaned]

16 print(f"Keywords: {sentiment_words}")

17 # Output: [’great ’, ’good ’, ’poor ’, ’excellent!’]

Data Formatting:

1 # Format student IDs

2 student_numbers = [123, 4567, 89, 12345]

3

4 # Create standardized 6-digit IDs with leading zeros

5 formatted_ids = [f"STU{num :06d}" for num in student_numbers]

6 print(f"Student IDs: {formatted_ids}")

7 # Output: [’STU000123 ’, ’STU004567 ’, ’STU000089 ’, ’STU012345 ’]

8

9 # Create display names

10 display_names = [f"Student #{num}" for num in student_numbers]

11 print(f"Display: {display_names}")

12 # Output: [’Student #123’, ’Student #4567’, ’Student #89’, ’Student

#12345 ’]

5 Part IV: Filtering with Conditions - Selective Processing

Filtering is like having a bouncer at a club - only items that meet specific criteria are allowed
into the result list. You add an if clause to your comprehension to specify the criteria.

5.1 Filtering Syntax

[
expression

transform

for

keyword

item

variable

in

keyword

iterable

data source

if

filter

]
condition

criteria

Filtering Pattern: [expression for item in iterable if condition]

5.2 Basic Filtering Examples

Numerical Filtering:

1 # Filter even numbers from 0 to 20

2 numbers = range (21) # 0 through 20

3 even_numbers = [num for num in numbers if num % 2 == 0]

4 print(f"Even numbers: {even_numbers}")

5 # Output: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

6

7 # Filter numbers in a specific range

8 big_numbers = [num for num in range (100) if num > 90]

9 print(f"Numbers > 90: {big_numbers}")

10 # Output: [91, 92, 93, 94, 95, 96, 97, 98, 99]

11

7

12 # Filter and transform: squares of odd numbers

13 odd_squares = [num ** 2 for num in range (10) if num % 2 == 1]

14 print(f"Odd squares: {odd_squares}")

15 # Output: [1, 9, 25, 49, 81]

Grade Processing System:

1 # Analyze student grades

2 all_grades = [95, 87, 76, 92, 83, 68, 94, 71, 88, 79]

3

4 # Filter passing grades (>= 70)

5 passing_grades = [grade for grade in all_grades if grade >= 70]

6 print(f"Passing grades: {passing_grades}")

7

8 # Filter honor roll students (>= 90)

9 honor_roll = [grade for grade in all_grades if grade >= 90]

10 print(f"Honor roll grades: {honor_roll}")

11

12 # Students needing help (< 80)

13 need_help = [grade for grade in all_grades if grade < 80]

14 print(f"Grades needing help: {need_help}")

15

16 # Calculate curved grades for struggling students

17 curved_struggling = [grade + 5 for grade in all_grades if grade < 75]

18 print(f"Curved grades for struggling students: {curved_struggling}")

5.3 String Filtering Operations

Text Processing with Conditions:

1 # Filter words by length and characteristics

2 words = ["Python", "is", "an", "amazing", "programming", "language", "

for", "beginners"]

3

4 # Short words (length <= 3)

5 short_words = [word for word in words if len(word) <= 3]

6 print(f"Short words: {short_words}")

7 # Output: [’is’, ’an’, ’for ’]

8

9 # Long words (length >= 8)

10 long_words = [word for word in words if len(word) >= 8]

11 print(f"Long words: {long_words}")

12 # Output: [’amazing ’, ’programming ’, ’language ’, ’beginners ’]

13

14 # Words starting with vowels

15 vowel_words = [word for word in words if word [0]. lower() in ’aeiou’]

16 print(f"Words starting with vowels: {vowel_words}")

17 # Output: [’is’, ’an’, ’amazing ’]

18

19 # Uppercase long words

20 upper_long = [word.upper () for word in words if len(word) > 6]

21 print(f"Uppercase long words: {upper_long}")

22 # Output: [’AMAZING ’, ’PROGRAMMING ’, ’LANGUAGE ’, ’BEGINNERS ’]

5.4 Complex Filtering with Boolean Logic

Multiple Conditions Using and, or, not:

8

1 # Complex student data analysis

2 student_scores = [45, 67, 78, 89, 92, 56, 71, 83, 94, 88]

3

4 # Students in the B range (80 -89)

5 b_grades = [score for score in student_scores if score >= 80 and score

< 90]

6 print(f"B grades: {b_grades}")

7 # Output: [89, 83, 88]

8

9 # Extreme scores (very high or very low)

10 extreme_scores = [score for score in student_scores

11 if score >= 90 or score <= 60]

12 print(f"Extreme scores: {extreme_scores}")

13 # Output: [45, 92, 56, 94]

14

15 # Not failing (NOT < 60)

16 not_failing = [score for score in student_scores if not score < 60]

17 print(f"Not failing: {not_failing}")

18 # Output: [67, 78, 89, 92, 71, 83, 94, 88]

19

20 # Complex criteria: Good but not excellent (70 -89)

21 good_not_excellent = [score for score in student_scores

22 if score >= 70 and score < 90]

23 print(f"Good but not excellent: {good_not_excellent}")

24 # Output: [78, 89, 71, 83, 88]

6 Part V: Processing Existing Data and Advanced Patterns

Now let’s apply comprehensions to real-world data processing scenarios, building on the list
processing skills from Enhanced Lecture 3.

6.1 Processing Existing Lists

Customer Data Processing:

1 # Process customer information

2 customers = ["Alice Johnson", "Bob Smith", "Charlie Brown", "Diana

Prince"]

3

4 # Create email addresses

5 emails = [name.replace(" ", ".").lower() + "@company.com"

6 for name in customers]

7 print("Customer emails:")

8 for customer , email in zip(customers , emails):

9 print(f" {customer} -> {email}")

10

11 # Extract first names

12 first_names = [name.split()[0] for name in customers]

13 print(f"First names: {first_names}")

14

15 # Find customers with long names (>= 12 characters)

16 long_names = [name for name in customers if len(name) >= 12]

17 print(f"Long names: {long_names}")

Sales Data Analysis:

9

1 # Monthly sales data

2 monthly_sales = [15000 , 18500, 22000, 19500, 16800, 21200,

3 25000, 23500, 20000, 18000, 19800, 26500]

4 months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",

5 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

6

7 # Calculate quarterly bonuses (10% of sales for months > 20000)

8 bonus_months = [(month , sales * 0.1) for month , sales

9 in zip(months , monthly_sales) if sales > 20000]

10 print("Bonus eligible months:")

11 for month , bonus in bonus_months:

12 print(f" {month }: ${bonus:,.0f}")

13

14 # Identify underperforming months (< average)

15 average_sales = sum(monthly_sales) / len(monthly_sales)

16 underperforming = [f"{month }: ${sales:,}" for month , sales

17 in zip(months , monthly_sales) if sales <

average_sales]

18 print(f"\nUnderperforming months (< ${average_sales :,.0f}):")

19 for month in underperforming:

20 print(f" {month}")

6.2 Advanced Pattern: Chaining Comprehensions

Multi-Stage Data Processing:

1 # Student grade processing pipeline

2 raw_scores = [78, 92, 85, 67, 94, 72, 88, 91, 76, 83]

3

4 # Stage 1: Apply curve to failing grades

5 curved_scores = [score + 5 if score < 70 else score for score in

raw_scores]

6 print(f"After curve: {curved_scores}")

7

8 # Stage 2: Extract grades that improved

9 improved_grades = [(original , curved) for original , curved

10 in zip(raw_scores , curved_scores) if curved >

original]

11 print("Improved grades:")

12 for original , curved in improved_grades:

13 print(f" {original} -> {curved}")

14

15 # Stage 3: Create letter grades for passing students

16 letter_grades = ["A" if score >= 90 else "B" if score >= 80 else "C"

17 for score in curved_scores if score >= 70]

18 print(f"Letter grades for passing students: {letter_grades}")

6.3 Performance Comparison: Comprehensions vs Loops

Speed and Memory Efficiency:

1 # Example demonstrating comprehension efficiency

2 import time

3

4 # Large dataset for performance testing

5 large_numbers = list(range (100000))

10

6

7 # Method 1: Traditional loop approach

8 start_time = time.time()

9 loop_result = []

10 for num in large_numbers:

11 if num % 2 == 0:

12 loop_result.append(num ** 2)

13 loop_time = time.time() - start_time

14

15 # Method 2: List comprehension approach

16 start_time = time.time()

17 comp_result = [num ** 2 for num in large_numbers if num % 2 == 0]

18 comp_time = time.time() - start_time

19

20 print(f"Loop approach time: {loop_time :.4f} seconds")

21 print(f"Comprehension time: {comp_time :.4f} seconds")

22 print(f"Comprehension is {loop_time/comp_time :.1f}x faster!")

23 print(f"Results are identical: {loop_result == comp_result}")

7 Key Concepts Summary

Basic Comprehensions:

� [expr for item in iterable]

� More concise than loop + append

� Expression evaluated for each item

� Returns new list with results

� Memory efficient processing

Filtering Comprehensions:

� [expr for item in iterable if

condition]

� Selects only items meeting criteria

� Condition tested before expression

� Can combine multiple conditions

� Perfect for data validation

Transformation Patterns:

� Mapping: Apply same transformation to all items [f(x) for x in data]

� Filtering: Select items meeting criteria [x for x in data if condition]

� Filter + Map: Transform selected items [f(x) for x in data if condition]

� Complex expressions: Use parentheses for complex operations

Performance Benefits:

� Faster execution than equivalent loops

� More memory efficient

� Optimized at Python interpreter level

� Cleaner, more maintainable code

11

8 Loop-to-Comprehension Conversion Guide

Pattern Recognition and Conversion:

1 # PATTERN 1: Simple transformation

2 # OLD WAY (Loop + Append):

3 result = []

4 for item in data:

5 result.append(transform(item))

6

7 # NEW WAY (Comprehension):

8 result = [transform(item) for item in data]

9

10 # PATTERN 2: Conditional processing

11 # OLD WAY:

12 result = []

13 for item in data:

14 if condition(item):

15 result.append(item)

16

17 # NEW WAY:

18 result = [item for item in data if condition(item)]

19

20 # PATTERN 3: Transform and filter

21 # OLD WAY:

22 result = []

23 for item in data:

24 if condition(item):

25 result.append(transform(item))

26

27 # NEW WAY:

28 result = [transform(item) for item in data if condition(item)]

9 Practical Applications

Real-World Uses of List Comprehensions:

� Data Preprocessing: Clean and transform datasets for analysis

� Web Development: Process user input, format API responses

� Scientific Computing: Transform numerical data, filter experimental results

� Text Processing: Parse documents, extract keywords, format output

� Business Analytics: Process sales data, calculate metrics, generate reports

� Game Development: Process player data, calculate scores, update game states

� Database Operations: Format query results, validate input data

� Image Processing: Transform pixel data, apply filters, resize images

10 Best Practices and Guidelines

When to Use Comprehensions:

� Simple transformations and filtering operations

12

� When you need a new list based on existing data

� One-line operations that improve code readability

� Performance-critical data processing tasks

When to Stick with Loops:

� Complex logic requiring multiple steps

� When you need to modify existing lists in-place

� Operations with side effects (printing, file I/O)

� When comprehension would be too complex to read

Code Quality Tips:

� Keep comprehensions readable - break complex ones into multiple lines

� Use meaningful variable names even in comprehensions

� Comment complex comprehensions to explain the logic

� Consider breaking very long comprehensions into separate steps

11 Connection to Next Lecture

In Lecture 5, we’ll learn about functions - a way to organize and reuse code blocks. Functions
will allow us to:

� Create custom transformation functions for use in comprehensions

� Build reusable data processing utilities

� Implement complex algorithms using functional programming patterns

� Combine comprehensions with function definitions for powerful data pipelines

The comprehension skills from this lecture will be essential building blocks for creating
sophisticated function-based data processing systems.

12 Study Tips

1. Practice Pattern Recognition: Identify loop + append patterns in existing code

2. Start Simple: Begin with basic transformations before adding conditions

3. Read Aloud: ”For each item in data, if condition, transform item”

4. Convert Gradually: Take existing loops and convert them to comprehensions

5. Test Both Ways: Verify your comprehensions produce the same results as loops

6. Time Your Code: Compare performance between loops and comprehensions

7. Use Examples: Work with real data like grades, names, prices

8. Practice Daily: Comprehension thinking becomes natural with regular practice

13

Remember: List comprehensions are Python poetry -
elegant, efficient, and expressive data processing!

14

	Today's Learning Journey: From Loops to Comprehensions
	Part I: The Transformation - Why List Comprehensions Matter
	Real Transformation Example: Building a Grade List

	Part II: Basic List Comprehension Syntax - The Foundation
	The Comprehension Anatomy
	Building Your First Comprehensions
	Common Beginner Patterns

	Part III: Mapping Operations - Data Transformation
	Real-World Mapping Analogy: Photo Filter

