Lecture 4 Handout

List Comprehensions

Prof. Rongyu Lin
Quinnipiac University
School of Computing and Engineering

Fall 2025

Required Reading

Textbook: Chapter 5.12, List Comprehensions
Reference Notebooks: ch05/05_12.ipynb (list comprehensions), ch05/05_02.1ipynb (basic
lists), ch05/05_05.ipynb (slicing)

Prerequisites Review

Building on Your Enhanced Knowledge Foundation:

From Lectures 1-2: Complete mastery of variables, data types, arithmetic operations, in-
put/output, decision structures (if/elif/else), boolean logic, comparison operators, string meth-
ods
From Enhanced Lecture 3: List fundamentals (creation, indexing, slicing, len()), for
loops with range() in all forms, while loops, nested control structures, boolean operators
(and, or, not)

Transformation Goal: This lecture transforms you from loop-based list building to
comprehension-based data processing - a more elegant and efficient programming ap-
proach.

Learning Objectives

By the end of this lecture, you will be able to:

1. Master basic list comprehensions using [expression for item in iterable] syntax effi-
ciently

2. Understand mapping patterns to transform data using expressions within compre-
hensions

3. Implement filtering techniques using conditional comprehensions with if clauses
4. Process existing data structures applying comprehensions to lists, strings, and ranges

5. Recognize comprehension opportunities to replace loop-based list building with el-
egant alternatives

6. Apply expression evaluation understanding how comprehensions process each element

7. Build data processing pipelines creating sequences of comprehensions for complex
transformations

8. Demonstrate performance benefits understanding efficiency advantages over tradi-
tional loops

1 Today’s Learning Journey: From Loops to Comprehensions

This lecture introduces the elegant world of list comprehensions - a concise, powerful way to
create and process lists. We’ll transform your loop-based thinking into functional programming
patterns that are more readable, efficient, and Pythonic.

Part I: The ”Why” - From Loop Patterns to Comprehensions (15 min)
e Understanding the motivation: Why comprehensions exist

e Comparing traditional for loop + append patterns with comprehension syntax

e Performance and readability advantages

e Introduction to functional programming concepts

Part II: Basic Comprehension Syntax and Structure (20 min)

e Mastering [expression for item in iterable] syntax
e Expression evaluation process and iteration mechanics
e Converting simple range-based loops to comprehensions

e Working with different iterable types (ranges, lists, strings)

Part III: Mapping - Data Transformation Operations (15 min)

e Understanding mapping as data transformation
e Using arithmetic operations and math functions in expressions
e String processing and text transformation

e Creating calculated datasets and mathematical sequences

Part IV: Filtering - Conditional Processing (15 min)

e Adding if conditions for selective processing
e Complex boolean conditions using and, or, not operators
e Combining filtering with transformation

e Building data validation and selection systems

Part V: Advanced Patterns and Real-World Applications (10 min)

e Processing existing lists and practical data scenarios
e Performance comparison with traditional approaches
e Best practices and code quality guidelines

e Connection to functional programming paradigms

2 Part I: The Transformation - Why List Comprehensions Mat-

ter

Imagine you’re a factory manager. You have two ways to process products:
Traditional Assembly Line (Loop Approach):

Traditional way: Create empty container, then fill 2t step by step

processed_items = [] # Empty container
for item in raw_materials: # Process each ttem
processed_item = transform(item) # Transform the item

processed_items.append (processed_item) # Add to container

Modern Processing Unit (Comprehension Approach):

Modern way: Transform and collect 2n one elegant operation
processed_items = [transform(item) for item in raw_materials]

Both produce the same result, but the comprehension approach is:
e More concise - One line instead of four

e More readable - Intent is immediately clear

e More efficient - Python optimizes comprehensions internally

e More Pythonic - Follows Python’s philosophy of elegant simplicity

2.1 Real Transformation Example: Building a Grade List
Loop-Based Approach (What You Know):

Traditional way wusing for loop + append pattern from Lecture 3
raw_scores = [85, 92, 78, 96, 88, 73, 91, 84]

curved_grades = [] # Create empty list

print ()

for score in raw_scores: # Iterate through each score
curved_grade = score + 5 # Apply 5-point curwve
curved_grades.append (curved_grade) # Add to result list
print (£)

print (f)

Comprehension Approach (What You’re Learning):

Modern way using list comprehension
raw_scores = [85, 92, 78, 96, 88, 73, 91, 84]

Transform all scores in one elegant line

curved_grades = [score + 5 for score in raw_scores]
print (£)
print (£)

Output: [90, 97, 83, 101, 93, 78, 96, 89]

The Magic: The comprehension does in one line what the loop does in four, and it’s more

efficient!

10

11

12

3 Part II: Basic List Comprehension Syntax - The Foundation

List comprehensions have a specific anatomy that you must master. Think of it like a sentence
structure in English - once you understand the pattern, you can create infinite variations.

3.1 The Comprehension Anatomy

1 1
expression item
| |

[

transform each itedeyword

variable name keyword

]

Basic Pattern: [expression for item in iterable]

3.2 Building Your First Comprehensions

Example 1: Transform Numbers Using range()

iterable

data source

Create list of squares from 1 to 5
Traditional way:
squares = []
for number in range(1l, 6):
square = number *xx*x 2
squares . append (square)
print (£)

Comprehenston way:

squares = [number *x 2 for number in range(l, 6)]
print (£)
Both output: [1, 4, 9, 16, 25]
Step-by-Step Evaluation:
e range(1, 6) produces: 1, 2, 3,4, 5
e For number = 1: expression = 1 ** 2 =1
e For number = 2: expression = 2 ** 2 =4
e For number = 3: expression = 3 ** 2 =9
e For number = 4: expression = 4 ** 2 = 16
e For number = 5: expression = 5 ** 2 = 25
e Result: [1, 4, 9, 16, 25]
Example 2: Using All Three Forms of range()
Form 1: range(stop) - Basic counting
first_ten = [x for x in range (10)]
print (£)
Output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Form 2: range(start, stop) - Custom range
teens = [age for age in range (13, 20)]
print (£)
Output: [13, 14, 15, 16, 17, 18, 19]
Form 3: range(start, stop, step) - Custom tncrement

even_numbers = [num for num in range(0, 21, 2)]
print (£)
Output: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Example 3: Processing Strings

Transform string characters

word =
uppercase_chars = [char.upper() for char in word]
print (f)

Output: [’P’, ’Y’, °T’, ’H’, 07, ’N’]

Create list of character codes
char_codes = [ord(char) for char in word]
print (£)

Output: [80, 121, 116, 104, 111, 110]

3.3 Common Beginner Patterns

Pattern 1: Mathematical Transformations

Multiple mathematical operations
numbers = [1, 2, 3, 4, 5]

Double each number
doubled = [x * 2 for x in numbers]
print (£)

Apply formula: (z°2 + 1) / 2
formula_results = [(x**2 + 1) / 2 for x in numbers]
print (£)

Pattern 2: String Processing

Process list of mames
names = [5)]

Capitalize first letter

capitalized = [name.capitalize() for name in names]
print (£)

Output: [’Alice’, ’Bob’, ’Charlie’]

Create ematl addresses

emails = [name + for name in names]

print (£)

Output: [’alice@university.edu’, ’bob@university.edu’,
charlie@Quniversity.edu’]

J

4 Part III: Mapping Operations - Data Transformation

Mapping is a fundamental concept in functional programming. It means ”apply the same
transformation to every item in a collection.” Think of it like a stamp that transforms every

document it touches.

4.1 Real-World Mapping Analogy: Photo Filter

When you apply an Instagram filter to a photo, you're mapping a transformation across every

pixel:

9

10
11
12

Pseudocode for photo filter

filtered_pixels = [apply_sepia_filter(pixel) for pixel in photo_pixels]

4.2 Mathematical Mapping Examples

Temperature Conversion System:

Convert Celsius temperatures to Fahrenheit
celsius_temps = [0, 10, 20, 30, 37, 100]

Formula: F = (C * 9/5) + 32

fahrenheit_temps = [(temp * 9/5) + 32 for temp in celsius_temps]

print ()

for ¢, f in zip(celsius_temps, fahrenheit_temps):
print (£)

Output:

O\texztdegree C = 32.0\textdegree F

10\ texztdegree C = 50.0\textdegree F

20\ textdegree C = 68.0\texztdegree F

30\ textdegree C = 86.0\textdegree F

37\ textdegree C = 98.6\textdegree F

100\ textdegree C = 212.0\texztdegree F

Financial Calculations:

Calculate compound interest for different principals
import math

principals = [1000, 5000, 10000, 25000]
rate = 0.05 # 57 annual rate
years = 10

Formula: A = P(1 + 7r)°t

final_amounts = [principal * (1 + rate) ** years for principal in

principals]

print()
for principal, final in zip(principals, final_amounts):
profit = final - principal
print (£
)

4.3 String Mapping Operations

Text Processing Pipeline:

Process customer feedback data

feedback_raw = [))
]
Step 1: Clean and standardize
cleaned = [text.strip().lower () for text in feedback_raw]
print (£)

Output: [’great service!’, ’good wvalue’, ’poor quality’,

1]

’excellent

Step 2: Create display format

display_format = [text.title() for text in cleaned]

print (£)

Output: [’Great Service!’, ’Good Value’, ’Poor Quality’, ’Ezcellent
2]

Step 3: Eztract sentiment keywords

sentiment_words = [text.split() [0] for text in cleaned]

print (£)

Output: [’great’, ’good’, ’poor’, ’excellent!’]

Data Formatting:

Format student IDs
student_numbers = [123, 4567, 89, 12345]

Create standardized 6-digit IDs with leading zeros
formatted_ids = [f for num in student_numbers]
print (£)

Output: [’STU000123°, °’STU004567°, ’STU000089°, ’STU012345°]

Create display mnames

display_names = [f for num in student_numbers]

print (£)

Output: [’Student #123°, ’Student #4567°, ’Student #89’, ’Student
#123457]

5 Part IV: Filtering with Conditions - Selective Processing

Filtering is like having a bouncer at a club - only items that meet specific criteria are allowed
into the result list. You add an if clause to your comprehension to specify the criteria.

5.1 Filtering Syntax

expression,
| |

: item | iterable if condition

transform | keyword

variable | keyworddata source filter criteria

Filtering Pattern: [expression for item in iterable if condition]

5.2 Basic Filtering Examples

Numerical Filtering:

Filter even numbers from 0 to 20

numbers = range(21) # 0 through 20

even_numbers = [num for num in numbers if num % 2 == 0]
print (f)

Output: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Filter numbers in a sSpectific range

big_numbers = [num for num in range (100) if num > 90]
print (£)

Output: [91, 92, 93, 94, 95, 96, 97, 98, 99]

13
14

Filter and transform: squares of odd numbers

odd_squares = [num ** 2 for num in range (10) if num % 2 == 1]
print (£)

Output: [1, 9, 25, 49, 81]

Grade Processing System:

Analyze student grades
all_grades = [95, 87, 76, 92, 83, 68, 94, 71, 88, 79]

Filter passing grades (>= 70)
passing_grades = [grade for grade in all_grades if grade >= 70]
print (£)

Filter homnor roll students (>= 90)
honor_roll = [grade for grade in all_grades if grade >= 90]
print (£)

Students needing help (< 80)
need_help = [grade for grade in all_grades if grade < 80]
print (£)

Calculate curved grades for struggling students

curved_struggling = [grade + 5 for grade in all_grades if grade < 75]

print (£)

5.3 String Filtering Operations

Text Processing with Conditions:

Filter words by length and characteristics

words = [: , ,)))
)]

Short words (length <= 3)

short_words = [word for word in words if len(word) <= 3]

print (£)

Output: [’4s’, ’an’, ’for’]

Long words (length >= 8)

long_words = [word for word in words if len(word) >= 8]

print (£)

Output: [’amazing’, ’programming’, ’language’, ’beginners’]

Words starting with wvowels

vowel_words = [word for word in words if word[0].lower () in]

print (£)

Output: [’4s’, ’an’, ’amazing’]

Uppercase long words

upper_long = [word.upper () for word in words if len(word) > 6]
print (£)

Output: [?AMAZING’, °PROGRAMMING’, °’LANGUAGE’, °’BEGINNERS’]

5.4 Complex Filtering with Boolean Logic
Multiple Conditions Using and, or, not:

Complex student data analysts
student_scores = [45, 67, 78, 89, 92, 56, 71, 83, 94, 88]

Students in the B range (80-89)

b_grades = [score for score in student_scores if score >= 80 and score
< 90]
print (£)

Output: [89, 83, 88]

Extreme scores (very htigh or wery low)

extreme_scores = [score for score in student_scores
if score >= 90 or score <= 60]
print (£)

Output: [45, 92, 56, 94]

Not failing (NOT < 60)

not_failing = [score for score in student_scores if not score < 60]
print (f)

Output: [67, 78, 89, 92, 71, 83, 94, 88]

Complex critertia: Good but not exzcellent (70-89)
good_not_excellent = [score for score in student_scores

if score >= 70 and score < 90]
print (£)
Output: [78, 89, 71, 83, 88]

6 Part V: Processing Existing Data and Advanced Patterns

Now let’s apply comprehensions to real-world data processing scenarios, building on the list
processing skills from Enhanced Lecture 3.

6.1 Processing Existing Lists

Customer Data Processing:

Process customer information
customers = [5) >

]

Create email addresses
emails = [name.replace(s) .lower () +
for name in customers]
print ()
for customer, email in zip(customers, emails):
print (f)

Extract first names
first_names = [name.split() [0] for name in customers]
print (£)

Find customers with long names (>= 12 characters)
long_names = [name for name in customers if len(name) >= 12]
print (£)

Sales Data Analysis:

Monthly sales data
monthly_sales = [15000, 18500, 22000, 19500, 16800, 21200,
25000, 23500, 20000, 18000, 19800, 26500]

months = [, 3 ; . . .
, , , , ,]
Calculate quarterly bonuses (10) of sales for months > 20000)
bonus_months = [(month, sales * 0.1) for month, sales
in zip(months, monthly_sales) if sales > 20000]
print ()
for month, bonus in bonus_months:
print (f)

Identify underperforming months (< average)
average_sales = sum(monthly_sales) / len(monthly_sales)
underperforming = [f for month, sales
in zip(months, monthly_sales) if sales <
average_sales]

print (£)
for month in underperforming:
print (f)

6.2 Advanced Pattern: Chaining Comprehensions

Multi-Stage Data Processing:

Student grade processing pipeline
raw_scores = [78, 92, 85, 67, 94, 72, 88, 91, 76, 83]

Stage 1: Apply curve to fatling grades

curved_scores = [score + 5 if score < 70 else score for score in
raw_scores]

print (£)

Stage 2: Exztract grades that improved
improved_grades = [(original, curved) for original, curved
in zip(raw_scores, curved_scores) if curved >
originall

print ()
for original, curved in improved_grades:
print (f)

Stage 3: Create letter grades for passing students

letter_grades = [if score >= 90 else if score >= 80 else
for score in curved_scores if score >= 70]

print (£)

6.3 Performance Comparison: Comprehensions vs Loops

Speed and Memory Efficiency:

Example demonstrating comprehension efficiency
import time

Large dataset for performance testing
large_numbers = list(range (100000))

10

7 |# Method 1: Traditional loop approach
s |start_time = time.time ()

9 |loop_result = []

10 |for num in large_numbers:

11 if num % 2 == 0:

12 loop_result.append (num ** 2)
13 |loop_time = time.time() - start_time
14
15 | # Method 2: List comprehension approach

6 | start_time = time.time ()

17 |comp_result = [num ** 2 for num in large_numbers if num % 2 == 0]
18 |comp_time = time.time() - start_time

20 | print (£)
21 | print (£)
22 | print (£)
23 | print (£)

7 Key Concepts Summary

Basic Comprehensions: Filtering Comprehensions:
e [expr for item in iterable] e [expr for item in iterable if
condition]

e More concise than loop + append

Selects only items meeting criteria

* Expression evaluated for each item Condition tested before expression

Returns new list with results

Can combine multiple conditions

Perfect for data validation

Memory efficient processing

Transformation Patterns:

e Mapping: Apply same transformation to all items [f(x) for x in datal

e Filtering: Select items meeting criteria [x for x in data if condition]

e Filter 4+ Map: Transform selected items [f(x) for x in data if condition]

e Complex expressions: Use parentheses for complex operations

Performance Benefits:

Faster execution than equivalent loops

More memory efficient

Optimized at Python interpreter level

Cleaner, more maintainable code

11

16
17
18

19

NN NNN NN
g9 o s W N = O

V)
o

8 Loop-to-Comprehension Conversion Guide

Pattern Recognition and Conversion:

PATTERN 1: Simple transformation

OLD WAY (Loop + Append) :

result = []

for item in data:
result.append(transform(item))

NEW WAY (Comprehension) :
result = [transform(item) for item in datal

PATTERN 2: Conditiomal processing
OLD WAY:
result = []
for item in data:
if condition(item):
result.append(item)

NEW WAY:
result = [item for item in data if condition(item)]

PATTERN 3: Transform and filter
OLD WAY:
result = []
for item in data:
if condition(item):
result.append (transform(item))

NEW WAY:
result = [transform(item) for item in data if condition(item)]

9 Practical Applications
Real-World Uses of List Comprehensions:
e Data Preprocessing: Clean and transform datasets for analysis
e Web Development: Process user input, format API responses
e Scientific Computing: Transform numerical data, filter experimental results
e Text Processing: Parse documents, extract keywords, format output
¢ Business Analytics: Process sales data, calculate metrics, generate reports
e Game Development: Process player data, calculate scores, update game states
e Database Operations: Format query results, validate input data

e Image Processing: Transform pixel data, apply filters, resize images

10 Best Practices and Guidelines

When to Use Comprehensions:

e Simple transformations and filtering operations

12

e When you need a new list based on existing data

e One-line operations that improve code readability

e Performance-critical data processing tasks

When to Stick with Loops:

e Complex logic requiring multiple steps

e When you need to modify existing lists in-place

e Operations with side effects (printing, file I/O)

e When comprehension would be too complex to read

Code Quality Tips:

e Keep comprehensions readable - break complex ones into multiple lines

e Use meaningful variable names even in comprehensions

e Comment complex comprehensions to explain the logic

e Consider breaking very long comprehensions into separate steps

11

Connection to Next Lecture

In Lecture 5, we’ll learn about functions - a way to organize and reuse code blocks. Functions
will allow us to:

e Create custom transformation functions for use in comprehensions

e Build reusable data processing utilities

e Implement complex algorithms using functional programming patterns

e Combine comprehensions with function definitions for powerful data pipelines

The comprehension skills from this lecture will be essential building blocks for creating
sophisticated function-based data processing systems.

12

1.

2.

Study Tips
Practice Pattern Recognition: Identify loop 4+ append patterns in existing code

Start Simple: Begin with basic transformations before adding conditions

. Read Aloud: "For each item in data, if condition, transform item”
. Convert Gradually: Take existing loops and convert them to comprehensions
. Test Both Ways: Verify your comprehensions produce the same results as loops

. Time Your Code: Compare performance between loops and comprehensions

Use Examples: Work with real data like grades, names, prices

. Practice Daily: Comprehension thinking becomes natural with regular practice

13

14

	Today's Learning Journey: From Loops to Comprehensions
	Part I: The Transformation - Why List Comprehensions Matter
	Real Transformation Example: Building a Grade List

	Part II: Basic List Comprehension Syntax - The Foundation
	The Comprehension Anatomy
	Building Your First Comprehensions
	Common Beginner Patterns

	Part III: Mapping Operations - Data Transformation
	Real-World Mapping Analogy: Photo Filter

