Introduction to Computers and Python INF 605: Introduction to Programming - Python

Prof. Rongyu Lin

Lecture 1

Quinnipiac University
School of Computing and Engineering

Reading: Deitel Ch. 1 (pp. 1-30)

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1 1/25

Today's Learning Journey

Part I: Getting to Know Each Other (15 min)

- Icebreaker activities
- Programming in daily life
- Course goals and expectations

Part II: Python Programming with Google Colab (60 min)

- Google Colab setup and introduction
- Why Python? Programming fundamentals
- First programs and calculations
- Variables and data types
- Preview of Python's power

Goal: By the end of today, you'll be confident writing Python programs with variables and data types!

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1 2/25

Learning Objectives

By the end of this lecture, you will be able to:

- Explain the relationship between hardware, software, and programming
- Understand why Python is an excellent first programming language
- Set up and use Python development environments (Google Colab, Jupyter)
- Write and execute Python programs with proper syntax
- Oreate and use variables to store different data types
- Perform mathematical calculations including order of operations
- Format output using f-strings and print statements
- Use basic math library functions
- Appreciate Python's role in data science and real-world applications

3/25

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1

Let's Get to Know Each Other!

Programming Background Survey

- Raise your hand if you've programmed before
- What programming languages have you tried?
- What was your first programming experience like?
- Don't worry if you're a complete beginner you're in great company!

Fun Fact: Every expert programmer started exactly where you are now!

"The best time to plant a tree was 20 years ago. The second best time is now."

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1 4 / 25

Programming is Everywhere!

Think-Pair-Share: Where do you encounter programming in daily life?

Examples you might not have considered:

- Your smartphone: Every app, every swipe, every notification
- Social media: Algorithms deciding what you see
- Transportation: GPS navigation, ride-sharing apps, traffic lights
- Entertainment: Netflix recommendations, Spotify playlists, video games
- Shopping: E-commerce sites, price comparisons, inventory management
- Education: Learning management systems, online courses, digital textbooks

Python Powers: Instagram, Netflix, Spotify, NASA, Google, financial institutions!

Programming isn't just for "tech people" - it's for everyone!

4□ > 4□ > 4 = > 4 = > = 90

5 / 25

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1

Your Programming Goals

Share with a neighbor: What do you hope to build or accomplish?

Possible goals and what Python can help you achieve:

- Data Analysis: Analyze sports statistics, financial data, research findings
- Web Development: Create websites and web applications
- Automation: Automate repetitive tasks, organize files, send emails
- Games & Apps: Build games, mobile apps, desktop applications
- Al & Machine Learning: Create intelligent systems, chatbots, image recognition
- Career Advancement: Add valuable skills to any field of study

Fun Python Facts:

- Named after "Monty Python's Flying Circus"
- Most popular programming language in the world (2024)
- Used by 8.2 million developers worldwide

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1 6 / 25

Welcome to INF 605!

Introduction to Programming - Python

- Practical Focus: Real-world applications
- Interactive Learning: Hands-on coding every class
- Modern Approach: Industry-standard tools and practices
- Data Science Ready: Foundation for analytics and Al
- Project-Based: Build portfolio-worthy applications

Course Philosophy:

"Learning programming is like learning to drive - you need practice behind the wheel!"

Every class: Code \rightarrow Practice \rightarrow Build

Lecture 1

7 / 25

Prof. Rongyu Lin INF 605 - Lecture 1

What is Programming?

Programming is...

- Problem Solving: Breaking down complex tasks into simple steps
- Communication: Giving precise instructions to computers
- Creativity: Building solutions that didn't exist before
- Logical Thinking: Organizing ideas in a structured way
- Automation: Making computers do repetitive work

Programming is NOT:

- Only for "math geniuses"
- Memorizing syntax
- Working alone in dark rooms
- Just for computer science majors

Real-World Analogy: Programming is like cooking! Recipe \rightarrow Program, Ingredients \rightarrow Data, Instructions \rightarrow Code

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1 8 / 25

Computer Fundamentals: Hardware & Software

Hardware (Physical Components):

- CPU: The "brain" that executes instructions
- Memory (RAM): Temporary storage for active programs
- Storage: Long-term storage (SSD, hard drives)
- Input/Output: Keyboard, mouse, screen, network

Software (Instructions):

- Operating System: Windows, macOS, Linux
- Applications: Web browsers, games, productivity tools
- **Programming Languages:** Python, Java, C++, etc.

Key Relationship: Software controls Hardware

Amazing Fact: Today's smartphones have more computing power than the computers used for the Apollo moon landing!

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1 9 / 25

Types of Programming Languages

The Evolution of Programming Languages:

1. Machine Language

- Binary (0s and 1s)
- Directly executed by CPU
- Very difficult for humans
- Hardware-specific

2. Assembly Language

- Human-readable mnemonics
- Still low-level
- One-to-one with machine code
- Requires assembler

3. High-Level Languages

- Human-friendly syntax
- Platform independent
- Python, Java, C++, JavaScript
- Easier to learn and use
- More productive programming

Which would you rather write?

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1 10 / 25

Google Colab: Our Python Playground

What is Google Colab?

- Free: No installation or setup required
- Cloud-based: Access anywhere with internet
- Powerful: Free GPU and TPU resources
- Collaborative: Share and work together
- Ready-to-use: Pre-installed Python libraries

Why We Use Colab in This Course:

- No complicated software installation
- Same environment for everyone
- Access from any computer/tablet
- Easy to share assignments and projects
- Professional data science environment

Getting Started:

- Visit: colab.research.google.com
- Sign in with your Google account
- Create a new notebook
- Start coding immediately!

11 / 25

Lecture 1

Colab Features for Learning Python

Key Features We'll Use:

Code Cells:

- Write and run Python code
- Instant execution with Shift+Enter
- See output immediately below

Text Cells (Markdown):

- Add explanations and notes
- Format with headers, lists, and links
- Mix documentation with code

Built-in Libraries:

- NumPy, Pandas, Matplotlib pre-installed
- No need to install packages
- Ready for data science projects

Live Demo: Let's open Colab and create our first program!

All course materials and assignments will be in Colab format

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1 12/25

Why Python? The Perfect First Language

Python's Advantages:

- Readable: Code looks like English
- **Beginner-Friendly:** Gentle learning curve
- Powerful: Can build anything from websites to Al
- Popular: Number 1 programming language worldwide
- Versatile: Web, data science, automation, games
- Great Community: Massive support and resources
- Rich Libraries: Don't reinvent the wheel

Industry Usage:

- Google, Netflix, Instagram, Spotify
- NASA, CERN, Financial institutions
- Data scientists and AI researchers

Python Philosophy: "Simple is better than complex. Readability counts."

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1 13/25

Your First Python Program

Let's write our first Python program together!

```
The Traditional "Hello, World!" Program: [Jupyter Compatible]
print("Hello, World!")
Let's make it more personal: [Jupyter Compatible]
print("Hello, Quinnipiac University!")
print("Welcome to INF 605!")
Adding some calculations: [Jupyter Compatible]
print("2 + 2 = ", 2 + 2)
print("Python is awesome!")
What's happening here?
```

- print(): A function that displays text
- Strings: Text in quotes
- Numbers: No quotes needed
- Operations: +, -, *, /

Python as a Powerful Calculator

Python can perform all kinds of mathematical operations:

Basic Arithmetic:

Addition: 15 + 25 gives 40
Subtraction: 50 - 18 gives 32
Multiplication: 6 * 7 gives 42
Division: 84 / 4 gives 21.0

More Operations:

- Floor division: 17 // 4 gives 4 (integer result)
- Modulus (remainder): 17 % 4 gives 1

Exponentiation: 2 ** 10 gives 1024

- Order of operations: 2 + 3 * 4 gives 14 (not 20!)
- Use parentheses: (2 + 3) * 4 gives 20

Working with Variables: [Jupyter Compatible]

- price = 29.99
- quantity = 3
- total = price * quantity
- print(f"Total: \${total:.2f}")

Advanced Math with Libraries: [Jupyter Compatible]

- import math
- math.sqrt(16) gives 4.0
- math.pi gives 3.14159...

Lecture 1

Understanding Python Data Types

Python automatically recognizes different types of data:

```
Numbers: [Jupyter Compatible]
• Integers: age = 20, year = 2025
• Floats: gpa = 3.75, price = 29.99
```

- **Text (Strings):** [Jupyter Compatible]
 - name = "Alice Johnson"
 - university = "Quinnipiac University"
 - Must be in quotes!

True/False (Booleans): [Jupyter Compatible]

- is_enrolled = True
- has_scholarship = False

Key Point: Python is smart - you don't need to declare types!

◆ロト ◆卸 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

Creating and Using Variables

Variables are like labeled boxes that store values

Creating Variables:

- student_name = "Alice Johnson"
- $student_age = 20$
- student_gpa = 3.75

Variable Naming Rules:

- Use descriptive names: price, not p
- Use underscores: first_name, not firstName
- Start with letter or underscore, not numbers
- No spaces or special characters

Using Variables in Calculations: [Jupyter Compatible]

- price = 29.99
- quantity = 3
- total = price * quantity
- print(f"Total: \${total:.2f}")

Let's create some variables together!

 Prof. Rongyu Lin
 INF 605 - Lecture 1
 Lecture 1
 17 / 25

Formatting Output with F-Strings

F-strings make it easy to include variables in text

Basic F-String Syntax: [Jupyter Compatible]

- Put f before the quotesPut variables inside curly braces {}
- print(f"Hello, {name}!")

Practical Examples: [Jupyter Compatible]

- name = "Alice"
- age = 20
- print(f"My name is {name} and I am {age} years old.")

Formatting Numbers: [Jupyter Compatible]

- price = 29.99567
- print(f"Price: \${price:.2f}")
- Output: "Price: \$29.96" (rounded to 2 decimal places)

F-strings make your output look professional!

18 / 25

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1

Preview: The Power of Python Libraries

Libraries give Python superpowers!

Math Library Example: [Jupyter Compatible]

- import math
- math.sqrt(16) gives 4.0 (square root)
- math.pi gives 3.14159... (pi constant)
- math.sin(math.pi/2) gives 1.0

Real-World Calculation: [Jupyter Compatible]

- radius = 7.5
- area = math.pi * radius ** 2
- print(f"Circle area: {area:.2f}")

Coming Soon: You'll use libraries for data analysis, web development, machine learning, and more!

Don't reinvent the wheel - use libraries!

Prof. Rongyu Lin INF 605 - Lecture 1 19 / 25

Python in Data Science & Beyond

Where you'll see Python in action:

Data Science & Analytics:

- Pandas: Analyze spreadsheet-like data
- Matplotlib: Create stunning charts and graphs
- NumPy: Fast mathematical computations
- Jupyter: Interactive data exploration

Web Development:

- Flask/Django: Build web applications
- Requests: Interact with web APIs

Artificial Intelligence:

- TensorFlow: Machine learning models
- OpenCV: Computer vision and image processing

By the end of this course, you'll be ready to explore all of these!

Libraries: Standing on the Shoulders of Giants

What are Libraries?

- Pre-written code you can use
- Solve common problems
- Save time and effort
- Tested and reliable
- Community-contributed

Popular Python Libraries:

- NumPy: Fast mathematical computations
- Pandas: Data analysis and manipulation
- Matplotlib: Creating charts and graphs
- Requests: Web APIs and downloading data
- Flask/Django: Building web applications
- TensorFlow: Machine learning and Al
- OpenCV: Computer vision and image processing

This would be hundreds of lines without libraries!

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1 21 / 25

Development Environments

How do we write and run Python code?

1. Text Editor + Terminal

- Write code in any text editor
- Run with python filename.py
- Simple but basic

2. Integrated Development Environment (IDE)

- VS Code, PyCharm, Thonny
- Built-in features: debugging, syntax highlighting
- Professional development

3. Interactive Environments

- IPython: Enhanced interactive shell
- Jupyter Notebooks: Web-based, great for learning
- Perfect for experimentation

Today's Goal: Get familiar with IPython and create our first notebook!

Jupyter Notebooks: The Ultimate Learning Tool

What makes Jupyter special?

• Interactive: Run code as you write it

• Visual: Mix code, text, and charts

• Shareable: Easy to share with others

• Educational: Perfect for learning step-by-step

• Professional: Used by data scientists worldwide

Jupyter Features:

- Code cells and Markdown cells
- Rich output and inline plots
- Easy export and version control
- Interactive widgets

Benefits for Students:

- See results immediately
- Document your thinking
- Save your progress
- Portfolio of work

We'll create our first notebook together!

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1 23 / 25

Today's Takeaways & Next Steps

What We Covered Today:

- ✓ Got to know each other and shared programming goals
- ✓ Computer fundamentals and programming concepts
- ✓ Python's advantages as a first language
- ✓ Created variables and used different data types
- ✓ Performed calculations with proper syntax
- ✓ Learned about f-string formatting
- ✓ Preview of Python's power in data science

Hands-On Experience:

- ✓ Set up Google Colab environment for Python programming
- ✓ Wrote Python programs with variables
- ✓ Used Python for mathematical calculations
- ✓ Applied proper variable naming conventions
- ✓ Formatted output professionally

For Next Class:

- Read Deitel Chapter 2 (Variables and Simple Data Types)
- Try creating your own variable examples
- Install Python on your personal computer (optional)

Questions?

24 / 25

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1

Welcome to Your Programming Journey!

Congratulations!

You've taken your first steps into the world of programming

Remember:

"Every expert was once a beginner. Every master was once a disaster. Every pro was once an amateur."

The key is to keep practicing and never stop learning!

See you Wednesday for more Python adventures!

Prof. Rongyu Lin INF 605 - Lecture 1 Lecture 1 25 / 25